First-passage time of Markov processes to moving barriers

Figure 1. The random process hits the moving barrier $Y(t)$, the time of first appearance in the (x, y)-plane. The trajectory is a domain enclosing the initial point (x, y) and its boundary is T. The time of first passage being marked is T.

The theory of first-exit times for multidimensional diffusion processes (Dynkin (1965); Gihman and Skorohod (1972)) thus enables us to obtain differential equations for the moments y. With $Y(t)$ we may now consider the vector random process $Y(t)$ which satisfies the degenerate system of first-order stochastic equations and treat the first-passage-time problem for X as a first-exit-time problem for the vector (X, Y) in the plane. The separate trajectories of X and Y are sketched in Figure 1, appear as in Figure 2 when plotted in the Y-plane. We therefore see that the time of first passage of X to Y is the time of first exit of (X, Y) from all or some part of the half-plane, y. The theory of first-exit times for multidimensional diffusion processes thus enables us to obtain differential equations for the moments y.