Appendices

Appendix A: Physical Constants

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Symbol</th>
<th>Value</th>
<th>cgs units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed of light in vacuum</td>
<td>c</td>
<td>2.9979×10^{10}</td>
<td>cm s$^{-1}$</td>
</tr>
<tr>
<td>Elementary charge</td>
<td>e</td>
<td>4.8023×10^{-10}</td>
<td>statcoulomb</td>
</tr>
<tr>
<td>Electron mass</td>
<td>m_e</td>
<td>9.1094×10^{-28}</td>
<td>g</td>
</tr>
<tr>
<td>Proton mass</td>
<td>m_p</td>
<td>1.6726×10^{-24}</td>
<td>g</td>
</tr>
<tr>
<td>Proton/electron mass ratio</td>
<td>m_p/m_e</td>
<td>1.8361×10^3</td>
<td></td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>G</td>
<td>6.6720×10^{-8}</td>
<td>dyne cm2 g$^{-2}$</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>k_B</td>
<td>1.3807×10^{-16}</td>
<td>erg K$^{-1}$</td>
</tr>
<tr>
<td>Planck constant</td>
<td>h</td>
<td>6.6261×10^{-27}</td>
<td>erg s</td>
</tr>
<tr>
<td>Rydberg constant</td>
<td>R_H</td>
<td>1.0974×10^5</td>
<td>cm$^{-1}$</td>
</tr>
<tr>
<td>Bohr radius</td>
<td>a_0</td>
<td>5.2918×10^{-9}</td>
<td>cm</td>
</tr>
<tr>
<td>Electron radius</td>
<td>r_e</td>
<td>2.8179×10^{-13}</td>
<td>cm</td>
</tr>
<tr>
<td>Stefan–Boltzmann constant</td>
<td>σ</td>
<td>5.6774×10^{-5}</td>
<td>erg cm$^{-2}$ s$^{-1}$ K$^{-4}$</td>
</tr>
<tr>
<td>1 electronvolt</td>
<td>ϵ_e</td>
<td>1.6022×10^{-12}</td>
<td>erg</td>
</tr>
<tr>
<td>1 Ångström</td>
<td>λ_e</td>
<td>1.1604×10^4</td>
<td>K</td>
</tr>
<tr>
<td>1 jansky</td>
<td>ν_e</td>
<td>2.4180×10^{14}</td>
<td>Hz</td>
</tr>
<tr>
<td>1 solar flux unit</td>
<td>(AU)</td>
<td>10^{-8}</td>
<td>cm</td>
</tr>
<tr>
<td>1 astronomical unit</td>
<td>(AU)</td>
<td>10^{-19}</td>
<td>erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$</td>
</tr>
<tr>
<td>Solar radius</td>
<td>R_\odot</td>
<td>6.96×10^{10}</td>
<td>cm</td>
</tr>
<tr>
<td>Solar mass</td>
<td>M_\odot</td>
<td>1.99×10^{33}</td>
<td>g</td>
</tr>
<tr>
<td>Solar gravitation</td>
<td>g_\odot</td>
<td>2.74×10^4</td>
<td>cm s$^{-2}$</td>
</tr>
<tr>
<td>Solar escape speed</td>
<td>ν_∞</td>
<td>6.18×10^7</td>
<td>cm s$^{-1}$</td>
</tr>
<tr>
<td>Solar age</td>
<td>t_\odot</td>
<td>4.60×10^9</td>
<td>years</td>
</tr>
<tr>
<td>Solar radiant power</td>
<td>L_\odot</td>
<td>3.90×10^{33}</td>
<td>erg s$^{-1}$</td>
</tr>
<tr>
<td>Solar radiant flux density</td>
<td>F_\odot</td>
<td>6.41×10^{10}</td>
<td>erg cm$^{-2}$ s$^{-1}$</td>
</tr>
<tr>
<td>Solar constant (flux at 1 AU)</td>
<td>f_\odot</td>
<td>1.39×10^{6}</td>
<td>erg cm$^{-2}$</td>
</tr>
<tr>
<td>Solar solid angle (at 1 AU)</td>
<td>Ω_\odot</td>
<td>6.76×10^{-5}</td>
<td>ster</td>
</tr>
<tr>
<td>Photospheric temperature</td>
<td>T_{phot}</td>
<td>5.762</td>
<td>K</td>
</tr>
</tbody>
</table>
Appendix B: Plasma Parameters

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Definition</th>
<th>Numerical formula (cgs units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal pressure</td>
<td>$p_{th} = 2 n_e k_B T_e$</td>
<td>$2.76 \times 10^{-16} n_e T_e$ (dyne cm$^{-2}$)</td>
</tr>
<tr>
<td>Magnetic pressure</td>
<td>$p_m = B^2 / (8 \pi)$</td>
<td>$3.98 \times 10^{-2} B^2$ (dyne cm$^{-2}$)</td>
</tr>
<tr>
<td>Plasma-β parameter</td>
<td>$\beta = (\rho_{th} / \rho_m)$</td>
<td>$6.94 \times 10^{-15} n_e T_e B^{-2}$</td>
</tr>
<tr>
<td>Thermal scale height</td>
<td>$\lambda_T = 2 k_B T_e / (\mu c m_p g_{\odot})$</td>
<td>$4.73 \times 10^3 T_e$ (cm)</td>
</tr>
<tr>
<td>Electron thermal velocity</td>
<td>$v_{Te} = (k_B T_e / m_e)^{1/2}$</td>
<td>$3.89 \times 10^5 T_e^{1/2}$ (cm s$^{-1}$)</td>
</tr>
<tr>
<td>Ion thermal velocity</td>
<td>$v_{Ti} = (k_B T_i / m_i)^{1/2}$</td>
<td>$9.09 \times 10^5 (T_i / \mu)^{1/2}$ (cm s$^{-1}$)</td>
</tr>
<tr>
<td>Ion mass density</td>
<td>$\rho = n_i m_i = n_i \mu m_p$</td>
<td>$1.67 \times 10^{-24} \mu_1 (g)$</td>
</tr>
<tr>
<td>Sound speed</td>
<td>$c_S = (\gamma p_{th} / \rho)^{1/2}$</td>
<td>$1.66 \times 10^4 (T / \mu)^{1/2}$ (cm s$^{-1}$)</td>
</tr>
<tr>
<td>Alfvén speed</td>
<td>$\nu_A = (4 \pi \mu m_p n_i)^{1/2}$</td>
<td>$2.18 \times 10^{11} B (\mu n_i)^{-1/2}$ (cm s$^{-1}$)</td>
</tr>
<tr>
<td>Electron plasma frequency</td>
<td>$f_{pe} = (n_e e^2 / \pi m_e)^{1/2}$</td>
<td>$8.98 \times 10^n T_e^{1/2}$ (Hz)</td>
</tr>
<tr>
<td>Ion plasma frequency</td>
<td>$f_{pi} = (n_i Z^2 e^2 / \pi \mu m_p)^{1/2}$</td>
<td>$2.09 \times 10^5 Z (n_i / \mu)^{1/2}$ (Hz)</td>
</tr>
<tr>
<td>Electron gyrofrequency</td>
<td>$f_{ge} = e B / (2 \pi m_e c)$</td>
<td>$2.80 \times 10^8 B$ (Hz)</td>
</tr>
<tr>
<td>Ion gyrofrequency</td>
<td>$f_{gi} = Z e B / (2 \pi m_p c)$</td>
<td>$1.52 \times 10^5 Z B / \mu$ (Hz)</td>
</tr>
<tr>
<td>Electron collision frequency</td>
<td>$\nu_{ce} = 1 / f_{pe}$</td>
<td>$3.64 \times 10^n n_e \ln \Lambda T_e^{-3/2}$ (Hz)</td>
</tr>
<tr>
<td>Ion collision frequency</td>
<td>$\nu_{ci} = 1 / f_{pi}$</td>
<td>$5.98 \times 10^{-2} n_i \ln \Lambda Z T_e^{-3/2}$ (Hz)</td>
</tr>
<tr>
<td>Electron collision time</td>
<td>$\tau_{ce} = 1 / \nu_{ce}$</td>
<td>$2.75 \times 10^{-1} T_e^{3/2} / (n_e \ln \Lambda)$ (s)</td>
</tr>
<tr>
<td>Ion collision time</td>
<td>$\tau_{ci} = 1 / \nu_{ci}$</td>
<td>$1.67 \times 10^1 T_e^{3/2} / (n_i \ln \Lambda)$ (s)</td>
</tr>
<tr>
<td>Electron gyroradius</td>
<td>$R_e = v_{Te} / (2 \pi f_{ge})$</td>
<td>$2.21 \times 10^{-2} T_e^{1/2}$ (cm)</td>
</tr>
<tr>
<td>Ion gyroradius</td>
<td>$R_i = v_{Ti} / (2 \pi f_{gi})$</td>
<td>$9.49 \times 10^{-1} T_i^{1/2} \mu^{1/2} Z^{-1} B^{-1}$ (cm)</td>
</tr>
<tr>
<td>Debye length</td>
<td>$\lambda_D = (k_B T_e / 4 \pi n_e e^2)^{1/2}$</td>
<td>$6.90 \times 10^0 T_e^{1/2} n_e^{-1/2}$ (cm)</td>
</tr>
<tr>
<td>Dreicer field</td>
<td>$E_D = Z e \ln \Lambda / \lambda_D^2$</td>
<td>$1.01 \times 10^{-11} Z \ln \Lambda n_e T_e^{-1}$ (statvolt cm$^{-1}$)</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>$\sigma = n_e e^2 \tau_e / m_e$</td>
<td>$6.96 \times 10^7 \ln \Lambda Z T_e^{-1}$ (Hz)</td>
</tr>
<tr>
<td>Magnetic diffusivity</td>
<td>$\eta = e^2 / (4 \pi \sigma)$</td>
<td>$1.03 \times 10^{12} \ln \Lambda Z T_e^{3/2}$ (cm2 s$^{-1}$)</td>
</tr>
<tr>
<td>Magnetic Reynolds number</td>
<td>$R_m = lv / \eta$</td>
<td>$9.73 \times 10^{-13} lv T_e^{3/2} \ln \Lambda^{-1}$</td>
</tr>
<tr>
<td>Thermal Spitzer conductivity coeff.</td>
<td>$\kappa = lv / \eta$</td>
<td>9.2×10^{-7} (erg s$^{-1}$ cm$^{-1}$ K$^{-7/2}$)</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>$\kappa = \kappa T_e^{5/2}$</td>
<td>$9.2 \times 10^{-7} T_e^{5/2}$ (erg s$^{-1}$ cm$^{-1}$ K$^{-1}$)</td>
</tr>
<tr>
<td>Radiative loss rate</td>
<td>$\lambda_0 (T \approx 1$ MK)</td>
<td>1.2×10^{-22} (erg s$^{-1}$ cm3)</td>
</tr>
<tr>
<td>Coronal viscosity</td>
<td>ν_{visc}</td>
<td>4.0×10^{13} (cm2 s$^{-1}$)</td>
</tr>
</tbody>
</table>

- cgs units: length l (cm), mass m (g), time t (s), Temperature T (K), magnetic field B (G), densities n_i, n_e (cm$^{-3}$).
- Adiabatic index: $\gamma = \gamma_p / \gamma_e = (N + 2) / N = 5 / 3 = 1.67$.
- Ion/proton mass ratio $\mu = m_i / m_p$: $\mu(H) = 1$, $\mu(He) = 4$, $\mu(Fe) = 56$.
- Mean molecular weight in corona (H:He = 10:1): $\mu_C = (10 \times 1 + 1 \times 4) / 11 = 1.27$.
- Coronal approximation (full ionization): $n_i = n_e$.
- Coulomb logarithm: $\ln \Lambda = 23 - \ln (n_i T_e^{-3/2}) \approx 20$ for $T_e \lesssim 10$ eV.
- Charge state: proton $\rightarrow Z = 1$, Fe IX $\rightarrow Z = 8$.

Notation

Physical Units Symbols

A ampère, unit for electric current (SI)
Å ångström = 10^{-8} cm
AU astronomical unit
C coulomb, unit for electric charge (SI)
cm centimeter, unit for length (cgs)
dyne unit for force (cgs)
derg unit for energy (cgs)
eV electronvolt; keV, MeV, GeV
g gram, unit for mass (cgs); kg (SI)
G gauss, unit for magnetic field (cgs); kG
J joule, unit for energy (SI)
Hz hertz = s^{-1}, unit for frequency (SI); kHz, MHz, GHz
K kelvin, unit for temperature (cgs, SI); MK
m meter, unit for length (SI); μm, mm, cm, dm, km, Mm
N newton, unit for force (SI)
rad radian, unit angle π
s second, unit for time (cgs, SI)
ster steradian, unit for solid angle (ster = rad^2)
T tesla, unit for magnetic field (SI)
V volt, unit for electric potential (SI)
W watt, unit for power (SI); kW, MW

Latin Symbols

A magnetic vector potential function
A area (cm^2)
a amplitude (cm)
B magnetic field vector, magnetic induction
B magnetic field strength (G)
B(p,q) beta function
C count rate (s^{-1})
C contour curve of surface integral
D fractal dimension
D decay time (s)
D(x,t) diffusion constant (cm^2 s^{-1})
D total derivative \(\partial / \partial t + v \partial / \partial x \)
d distance (cm)
E total energy (erg)
E_{kin} kinetic energy (nonrelativistic \(E_{kin} = \frac{1}{2}mv^2 \))
E_m magnetic energy \(E_m = B^2/8\pi \)
E_{th} thermal energy \(E_{th} = k_B T_e \)
E_X total radiated energy in X-rays (erg)
EM emission measure \(EM = n^2 z \) (cm^{-3})
ε electric field strength (statvolt cm^{-1})
e elementary electric charge
\begin{itemize}
 \item e: energy (erg)
 \item F: photon flux (erg s-1 cm-2 keV-1)
 \item F: force (dyne)
 \item F_d: dynamic friction force (dyne)
 \item F_s: static friction force (dyne)
 \item f: frequency (Hz)
 \item $f(x)$: function
 \item G: gravitational constant
 \item g: gravitational acceleration (cm s-2)
 \item h: height (cm)
 \item h: Planck constant
 \item I: current (statampere)
 \item I: intensity of radiation (erg s-1 cm-2 Hz-1 ster-1)
 \item j: current density vector
 \item k_B: Boltzmann constant
 \item L, l: length (cm)
 \item L_X: luminosity in X-rays
 \item L: Laplacian
 \item M, m: mass (g)
 \item m: magnitude
 \item m_e: electron mass
 \item $N(x)$: differential frequency distribution of parameter x
 \item $N^{\text{cum}}(x)$: cumulative frequency distribution of parameter x
 \item n: number
 \item n_e: electron number density (cm-3)
 \item P: peak energy dissipation rate (erg s-1)
 \item P: time period (s)
 \item P: perimeter (cm)
 \item $P(x)$: probability distribution function of parameter x
 \item $P(\nu)$: power spectrum versus frequency ν
 \item p: powerlaw index of power spectrum $P(\nu) \propto \nu^{-p}$
 \item p: powerlaw index of waiting time distribution $N(p) \propto (\Delta t)^{-p}$
 \item p: pressure (dyne cm-2)
 \item q: ratio
 \item q: electric charge
 \item R, r: radius or range (cm)
 \item R_m: magnetic Reynolds number
 \item R_{\odot}: solar radius
 \item $R(T)$: instrumental temperature response function
 \item r: rate (s-1)
 \item S: surface (specifying a surface integral)
 \item S: source function
 \item S: size
 \item s: path distance along curve (cm)
 \item T: time duration (s)
 \item T: temperature (K)
 \item T_e: electron temperature (K)
 \item t: time (s)
 \item t_s: saturation time (s)
 \item V: volume (cm3)
 \item \mathbf{v}, v: velocity (cm s-1)
 \item v_A: Alfvén speed
 \item W: energy release rate (erg s-1)
 \item W_s: saturation energy rate (erg s-1)
\end{itemize}
Notation

- \(w \) width (cm)
- \(x \) spatial coordinate or position
- \(y \) spatial coordinate or position
- \(z \) spatial coordinate (along line-of-sight)
- \(z \) height difference

Greek Symbols

- \(\alpha \) powerlaw index of differential frequency distribution
- \(\alpha_A \) powerlaw index of area \(A \)
- \(\alpha_P \) powerlaw index of peak energy rate \(P \)
- \(\alpha_E \) powerlaw index of total energy \(E \)
- \(\alpha_S \) powerlaw index of size \(S \)
- \(\alpha_T \) powerlaw index of time duration \(T \)
- \(\alpha \) angle (deg)
- \(\alpha \) correlation coefficient
- \(\beta \) powerlaw index of cumulative frequency distribution
- \(\beta \) correlation coefficient
- \(\Gamma \) growth rate \((1/\tau_G)\)
- \(\gamma \) powerlaw index of power spectrum
- \(\gamma \) powerlaw index of photon spectrum
- \(\gamma \) correlation coefficient
- \(\gamma \) damping constant
- \(\nabla \) nablа operator
- \(\Delta \) Laplace operator
- \(\Delta \) difference
- \(\Delta t \) waiting time between events \((\Delta t = t_{i+1} - t_i)\)
- \(\delta \) powerlaw index of electron spectrum
- \(\varepsilon \) infinitesimal length scale
- \(\varepsilon \) photon energy \(\varepsilon = h\nu \) (keV)
- \(\varepsilon_x \) hard X-ray photon energy \(\varepsilon = h\nu_x \)
- \(\eta \) magnetic diffusivity
- \(\eta \) energy decay rate \((\text{erg s}^{-1})\)
- \(\Theta(x) \) Heavyside step function
- \(\theta, \vartheta \) angle
- \(\kappa \) diffusion constant
- \(\Lambda(T) \) radiative loss function
- \(\lambda \) wavelength (cm)
- \(\lambda \) event occurrence rate \((1/\Delta t)\)
- \(\mu \) mean (of Gaussian distribution)
- \(\nu \) frequency \((\text{s}^{-1} = \text{Hz})\)
- \(\nu_{\text{cisc}} \) coronal viscosity
- \(\rho \) mass density, \(\rho = n m \)
- \(\rho \) random number
- \(\sigma \) standard deviation (of Gaussian distribution)
- \(\sigma \) electrical conductivity
- \(\tau \) time scale \((\text{s})\)
- \(\tau_G \) growth time
- \(\tau_d \) decay time
- \(\tau_{\text{rise}} \) rise time
- \(\Phi \) magnetic flux \((\text{Mx} = G\text{ cm}^2)\)
- \(\varphi \) azimuthal angle
Acronyms

1-D, 2-D, 3-D one-, two-, three-dimensional
ACE Advanced Composition Explorer
AE Auroral Electron jet index
AGN Active Galactic Nuclei
BATSE Burst And Transient Source Experiment (on CGRO)
BCS Bragg Crystal Spectrometer (on Yohkoh)
BCSW Bak–Chen–Scheinkman-Woodford (1993) model
Cassini Cassini orbiter, part of the Cassini–Huygens space probe
CCD Charge Coupled Device (camera)
CME Coronal Mass Ejection
DC Direct Current
CCC Cross-Correlation Coefficient
CEOF Complex Empirical Orthogonal Function analysis (method)
CGRO Compton Gamma Ray Observatory (spacecraft)
Cluster Cluster (ESA space mission)
CV Cataclysmic Variable stars (Canes Venatici type stars)
DCIM DeCIMetric bursts
DEM Differential Emission Measure (distribution)
DKA Drift-Kinetic Alfvén vortex motions
DNA DeoxyriboNuclei Acid
EIT Extreme-ultraviolet Imaging Telescope (on SoHO)
ETH Eidgenössische Technische Hochschule (Zurich, Switzerland)
EUV Extreme UltraViolet
EUVE Extreme UltraViolet Explorer (spacecraft)
EUVI Extreme-UltraViolet Imager (on SECHI/STEREO)
FBR Fourier-Based Recognition (method)
Fermi Fermi Gamma-ray Space Telescope (spacecraft)
FFT Fast Fourier Transform
FWHM Full Width Half Maximum
FSOC Forced and/or Self-Organized Criticality model
FUV Far UltraViolet imager (on IMAGE spacecraft)
GEOTAIL magnetospheric satellite
GOES Geostationary Orbiting Earth Satellite (spacecraft)
GRANAT International Astrophysical Observatory (Russian spacecraft)
GRB Gamma-Ray Burst spectrometer (on ULYSSES spacecraft)
GSFC Goddard Space Flight Center (NASA)
Hα hydrogen line (6562.8 Å)
HSP High-Speed Photometer (on HST spacecraft)
HST Hubble Space Telescope (spacecraft)
HXRBS Hard X-Ray Burst Spectrometer (on SMM)
HXR Hard X-Rays
HXT Hard X-ray Telescope (on Yohkoh)
IBM International Business Machines Corporation
ICA Independent Component Analysis (method)
ICE International Cometary Explorer (ISEE-3 spacecraft)
IMAGE Imager for Magnetopause-to-Aurora Global Exploration (spacecraft)
IMF Interplanetary Magnetic Field
IMP Interplanetary Monitoring Platform (spacecraft)
ISEE-3 International Sun/Earth Explorer 3 (ICE spacecraft)
IT Intermittent Turbulence
JPL Jet Propulsion Laboratory (Pasadena, USA)
KLT Karhunen–Loève Transform (method)
LASCO Large Angle Spectrometric CORonagraph (on SOHO)
LMXB Low-Mass X-ray Binary star
LMC Large Magellanic Cloud (a galaxy)
MDI Michelson Doppler Imager (on SoHO)
MHD Magneto-HydroDynamics
MLT Multiple Level Tracking (method)
MW MicroWaves
MW-S MicroWave Spike bursts
NASA National Aeronautics and Space Administration
NGC New General Catalogue (of nebulae and star clusters)
NGDC National Geophysical Data Center (USA)
NICMOS Near Infrared Camera and Multi-Object Spectrometer (on HST)
NIXT Normal Incidence X-Ray Telescope (rocket instrument)
NOAA National Oceanic and Atmospheric Administration (USA)
OFC Olami–Feder–Christensen (1992) model
OSO-7 Orbiting Solar Observatory 7 (satellite)
PCA Principal Component Analysis (method)
PHEBUS Payload for High Energy BUrst Spectroscopy (on GRANAT)
POD Proper Orthogonal Decomposition (method)
POLAR Polar satellite
PSR PulSaR
QPO Quasi-Periodic Oscillations (in stellar data)
Ranger-8 lunar spacecraft
RCL Resistor (R), Capacitor (C), inductor (L) circuit
RHESSI Reuven Ramaty High Energy Solar Spectroscopic Imager (spacecraft)
RXTE Rossi X-Ray Timing Explorer (spacecraft)
SDSS Sloan Digital Sky Survey (ground-based telescope)
SECCHI Sun Earth Connection Coronal and Heliospheric Investigation (on STEREO)
SEP Solar Energetic Particle events
SGR Soft Gamma Repeaters
SMM Solar Maximum Mission (spacecraft)
SO Self-Organization
SOC Self-Organized Criticality
SOHO SOlar and Heliospheric Observatory (spacecraft)
SSC Sudden Storm Commencement (magnetospheric events)
SSW Solar SoftWare (software package in IDL)
STEREO Solar TERrestrial RELations Observatory (spacecraft)
SuperDARN Super Dual Auroral Radar Network
SWAVES STEREO/WAVES instrument (on STEREO spacecraft)
Swift spacecraft to observe gamma-ray bursts (NASA)
SXR Soft X-Rays
SXT Soft X-ray Telescope (on Yohkoh)
TRACE Transition Region And Coronal Explorer (spacecraft)
UCB University of California, Berkeley
Ulysses interplanetary spacecraft
UV ultraviolet
UVI UltraViolet Imager (onboard POLAR spacecraft)
Voyager Voyager 1 and 2 (interplanetary spacecraft)
<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATCH</td>
<td>Wide Angle Telescope for Cosmic Hard X-Rays (on GRANAT)</td>
</tr>
<tr>
<td>WHAM</td>
<td>Wisconsin Hα Mapper (ground-based telescope)</td>
</tr>
<tr>
<td>WIC</td>
<td>Wideband Imaging Camera (a FUV instrument on IMAGE)</td>
</tr>
<tr>
<td>WIND</td>
<td>interplanetary spacecraft</td>
</tr>
<tr>
<td>WTD</td>
<td>Waiting Time Distribution</td>
</tr>
<tr>
<td>XEST</td>
<td>XMM Extended Survey of the Taurus Molecular Cloud</td>
</tr>
<tr>
<td>XMM</td>
<td>X-ray Multi-Mirror Mission (spacecraft), also called Newton</td>
</tr>
<tr>
<td>XUV</td>
<td>eXtreme UltraViolet</td>
</tr>
</tbody>
</table>
Fig. 1.1a: http://members.virtualtourist.com/m/5f4b4/, Water-storage dam at Yaotsu, Gifu, Japan.
Fig. 1.1b: http://www.wholey.net/HST/HST.html, A large wet snow avalanche at Deadman Canyon (Jim and Louise Wholey).
Fig. 1.2a: http://www.vacation-rental-house.com/house-to-rent.html, Sand beach in northern California.
Fig. 1.2b: http://indianriverenterprises.com/6.html, Sandpile produced by conveyor belt of the Indian River Enterprises.
Fig. 1.4a: http://www.sliceofscifi.com/wp-content/uploads/2008/03/usa_night_satellite.jpg, North America at night, satellite picture taken by International Space Station (ISS, NASA).
Fig. 1.8: http://books.google.com/, from book by Zehnder, J.N. 1974, Der Goldauer Bergsturz: Goldau, 207p. Fig.4 on p.19 of book shows a sketch of Rossberg after Arth-Goldau rockslide, drawn by Fritz Morach.
Fig. 1.9: http://sd-www.jhuapl.edu/Aurora/UVL_on_Earth.html, Global image of the auroral oval, observed with the Ultraviolet Imager (UVI) onboard the NASA satellite “Polar” (George Parks, University of California, Berkeley, and Ching Meng, JHU/APL).
Fig. 1.11a: http://www.lightandmatter.com/html_books/1np/ch10/figs/saturn.jpg, Saturn rings observed by the NASA spacecraft “Voyager 2” (JPL).
Fig. 1.11b: http://www.outer-space-art-gallery.com/images/bergeronsaturn.jpg, space art rendering of Saturn rings, posted at website of Cosmic Cafe and Outer Space Art Gallery.
Fig. 1.12a: http://trace.lmsal.com/POD/looposcillations/paperI/images/T171_010415_221512.gif, solar postflare arcade observed by the NASA spacecraft TRACE (LMSAL).
Fig. 1.12b: http://trace.lmsal.com/POD/images/arcade_9_nov_2000.gif, solar postflare arcade observed by the NASA spacecraft TRACE (LMSAL).
Fig. 1.16: http://antwrp.gsfc.nasa.gov/apod/image/0607/rsohp_pparc_big.jpg, Artistic rendering of white dwarf star RS Oph, Astronomy picture of the day 2006 July 26 (David A. Hardy, PPARC, and GSFC/NASA).
Fig. 2.6: http://www.ics.uci.edu/~eppstein/ca/, John Conway’s “Game of Life” cellular automatons (D. Eppstein).
Fig. 2.9: http://en.wikipedia.org/wiki/Bak–Sneppen_model, Bak-Sneppen model, Wikipedia, figure created by Claudio Rocchini.
Fig. 8.20a: http://meteorites.wustl.edu/lunar/crater_l.jpg, Lunar craters photographed by NASA’s Apollo 11 mission, posted by Randy L. Korotov at website of Dept. of Earth and Planetary Sciences, Washington University St. Louis.
Fig. 8.21a: http://www.astrobio.net/albums/xsolar/aci.sized.jpg, Asteroid Eros and asteroid belt, posted by Astrobio Magazine, American Scientist Magazine, and Johns Hopkins University Applied Physics Laboratory (JHU/APL).
Fig. 9.1: http://www.mso.anu.edu.au/2dFGRS/Public/Pics/2dFzcone_big.gif, 2dF galaxy redshift survey, posted at website of The Australian National University (ANU), figure created by Matthew Colless.
Fig. 9.2: http://www.aip.de/image_archive/images/mandersen.jpg, R136 in 30 Doradus, photographed by the NICMOS instrument on NASA’s Hubble Space Telescope (HST), figure credit Morten Andersen, posted at website of Astrophysical Institute Potsdam.
Fig. 9.3: http://l.space.com/images/h_jet_schematic_02.jpg, http://www.tutorgig.com/ed/Black_hole, Artistic rendering of blazar, NASA website.
Fig. 9.4: http://www.nasa.gov/images/content/311187main_fermiswift_magnetar2_HI.jpg, Artistic rendering of magnetar, NASA/GSFC website of SWIFT mission.
Fig. 9.5: http://astroparticle.uchicago.edu/archives.htm, University of Chicago, credit Simon Swordy.
Fig. 9.10: http://pluto.space.swri.edu/image/glossary/substorm.jpg, Substorm cartoon from W. Baumjohann and R.A. Treumann, Basic Space Plasma Physics, 1996. The three auroral images were obtained with the WIC instrument onboard NASA’s IMAGE mission, posted at webpage of Southwest Research Institute.

Fig. 10.2a: www.maion.com/photography_/photos/nami1673.jpg, Sand dunes in Namibia, website of Jef Maion.

Fig. 10.2b: http://www.freemars.org/jeff/planets/Jupiter.jpg, Jupiter photographed by NASA’s Voyager 2 mission, posted by Jeff Root at website of the Minnesota Space Frontier Society.

Fig. 10.2d: http://www.sciencedaily.com/images/2007/02/070210172729.jpg, Jupiter’s moon Europa, photographed by NASA and JPL Galileo mission, posted at website Science Daily: News and Articles in Science, Health, Environment and Technology.

Fig. 10.5: http://sci.esa.int/science-e-media/img/c1/solarwind-spectrum410.gif, Solar wind spectra of turbulence cascade, measured with ESA’s Cluster mission, modeled with gyro-kinetic theory (Howes et al. 2008), posted at ESA/CLUSTER website.

Fig. 10.8a: http://ccl.northwestern.edu/netlogo/models/Percolation, Percolation code from NetLogo Models Library: Sample Models/Earth Science, posted at website of Center for Connected Learning (CCL) and Computer-Based Modeling at Northwestern University.

Fig 10.10: http://astronomy.swin.edu.au/cosmos/S/Sunspot+Cycle, Solar cycle sunspot number, credit National Geophysical Data Center (NGDC), posted at website of Swinburne University of Technology, Australia.
References

Bak, P., Chen, K., and Tang, C. 1990, A forest-fire model and some thoughts on turbulence, Phys. Lett A 147/5-6, 297-300.

Bristow, W. 2008, Statistics of velocity fluctuations observed by SuperDARN under steady interplanetary magnetic field conditions, J. Geophys. Res. 113, CiteID:A11202.

Chang, T.S. 1992, *Low-dimensional behavior and symmetry breaking of stochastic systems near criticality – Can these effects be observed in space and in the laboratory*, IEEE Trans. Plasma Sci. 20/6, 691-694.

Chialvo, D.R. and Bak, P. 1999, Learning from mistakes, Neuroscience 90, 1137-1148.

References

Fuyii, Y. 1969, Frequency distribution of the magnitude of landslides caused by heavy rainfall, Seismol. Soc. Japan J. 22, 244-247.

Grassberger, P. and de La Torre, A. 1979, Reggeon field theory (Schlögl’s first model) on a lattice: Monte Carlo calculations of critical behaviour, Annals of Physics 122, 373-396.

References

References

References

References 383

References

References

Uritsky, V.M., Klimas, A.J., Vassiliadis, D., Chua, D., and Parks, G. 2002, Scale-free statistics of spatiotemporal auroral emission as depicted by Polar UVI images: dynamic magnetosphere is an avalanching system, J. Geophys. Res. 1078/A12, SMP 7-1, CiteID 1426.
References

Index

abacinate, 10
abcedarian, 10
abderian, 10
Abelian property, 44
Abramenko, V.I., 275, 276, 330
acceleration time, 313
accretion, 22
accretion disks, 29, 33, 78, 104, 117, 187, 245, 291, 293, 295, 341
waiting time distributions, 167
ACE, 164, 332
acorn, 46
active regions, 259, 262, 274, 275, 277, 278, 301, 303
percolation, 339
power spectrum, 276
size, 25, 104, 280, 308
Adamic, L., 89
adaption, 12
additive processes, 135, 288
additivity, 1, 2
definition, 348
AE bursts, 334
AE index, 20, 22, 57, 58, 215, 318, 319, 329
1/f spectrum, 318
waiting times, 152
aerosols, 15, 18
age of universe, 289
agent-based models, 11, 50
aggregate production, 50
aging, 12
AGN, 32, 34, 128, 246, 291, 296, 297
Aharony, A., 269
Akabane, K., 26, 233, 234
Aki, K., 15, 16
Aletti, V., 26, 231, 233, 279
Alexander, D., 230
Alexandrova, O., 333
Alfvén speed, 66, 304
definition, 348
Alfvén waves, 28, 332
Alfvén, H., 317
Alfvénic resonances, 319
Alfvénic transit time, 305
Alstrom, P., 44, 47
Altman, S., 201
Aly, J.J., 330
Amari, T., 330
Ambruster, C.W., 165
ammonia ice clouds, 324
Ampère’s law, 58, 299
Anastasiadis, A., 28, 313
Andersen, J.V., 45
Anderson, R.M., 15
Andrade creeps, 8
Andrade, R.F.S., 15, 18
Angelopoulos, V., 19, 20, 58, 214–216, 334, 335, 337
angle of repose, 5, 57
Anglo-Australian Observatory, 289
Angstrom, definition, 347
angular momentum, 3, 80, 242, 244, 289
accretion disks, 295, 296
pulsars, 294
transport, 295
animal roadkill, 8
animal skin, 324
anisotropic, 44, 67
annealed disorder, 8
annihilation electron-positron, 220
Ansari, M.H., 34
Antipov, S.V., 325
Antonova, E.E., 334
Archimedian spiral, 316
area filling factor, 270
area scaling, 89, 231
Argyle, E., 32, 33, 242, 243
Armstrong, J.C., 336
aromatic chemicals, 338
Arth/Goldau, 17
Arthur Conan Doyle (1859–19, 321
Aschwanden, P.D., 75, 259, 260, 264–268, 270–272
Asgari-Targhi, M., 303
Asimov, I., 37
asteroid belt, 282, 290, 324
asteroid Eros, 282
asteroid impact, 14
asteroid orbits, 340
asteroids, 22
definition, 347
astrophysical system, 1
atmospheric showers, 296
atomic energy, 290
atomic scales, 251
atomic spin flips, 340
atoms, 326
attractors, 33, 44, 337
AU index, 215
Audard, M., 28–30, 33, 165, 166, 208, 239–241
aurorae, 19, 151, 152, 322
auroral blobs, 19, 104, 152
auroral displays, 318
auroral images, 19, 20
auroral kilometric radiation, 314
Ausloos, M., 15
auto-correlation function, 122, 124, 125, 127, 130
autocatalytic, 8
autocatalytic networks, 324
autoregressive model, 178
Böttcher, S., 17, 53, 54
Bénard cells, 324, 326
Bénard convection, 5
Babcok, K.L., 8
Bachelery, P., 15, 18
background subtraction, 146, 212, 228
Bai, T., 25
Baiesi, M., 161
Bak, P., 1, 4–8, 11–19, 22, 34, 38, 39, 41–44, 47, 50–54, 56, 78, 133, 134, 138, 150, 151, 153, 159, 249, 250, 268, 321
Bak-Sneppen model, 14, 52
Baker, D.N., 22
Balbus, S.A., 295
Balbus–Hawley instability, 80, 295, 296
Balke, A.C., 260, 262, 339
bailerina skirt, 316, 317
balloon-borne instrument, 217
Balogh, A., 163
Barabasi, A.L., 15
Bargatze, L.F., 19
bark, 249
Barkhausen effect, 8
Barnsley, M., 250
Bartolozzi, M., 11, 13, 140
Baryshev, Y., 250, 289, 326
Bassler, I.E., 8
Bastian, T.S., 314
BATSE/CGRO, 154, 155, 157, 187, 218, 221, 244
Baudin, F., 187
Baumann, I., 278
Baumann, W., 318
Bayesian blocks, 127, 143, 154, 159, 163
Bayesian statistics, 142, 180, 274
BCS/SMM, 226, 227
bear markets, 127
Belanger, E., 25
Belousov–Zhabotinsky reaction, 324
Belovsky, M.N., 238
Beltrami, E., 94
Benz, A.O., 24–26, 28, 75, 195, 229, 231, 235, 275, 308, 313, 342
Berger, B.R., 15, 18
Berger, M.A., 303
Berghmans, D., 198, 275, 276, 279
Bernardes, A.T., 8
Berrilli, F., 262
beta function, 310
Bethe–Heitler bremsstrahlung cross-section, 309, 312
Bevington, P.R., 112, 117
Biesecker, D.A., 26, 154, 155, 218
bigbang model, 34, 289, 322
bin-free powerlaw fit, 214
binaries
low-mass binaries, 293
low-mass X-ray binaries, 341
Scorpius X-1, 341
binary data, 251
binomial coefficients, 112
binomial distribution, 112
binomial equation, 112
biodiversity, 14
biological extinction, 13
biological system, 5, 10
biological taxa, 89
biomacromolecules, 324
bipass filter, 180
bipolar regions, 278
bird flying formation, 15, 324
Birkeland, K.W., 15, 18
black holes, 31–33, 117, 127, 134, 139, 243, 245, 290, 291, 295
Cygnus X-1, 31, 32, 78, 128, 136, 167
GX 301-1, 128
GX 339-4, 128
waiting time distributions, 167
blazars, 32, 34, 243, 246, 290, 291
noise spectrum, 246, 293
optical emission, 291
blinkers, 46
boat, 46
Bocchialini, K., 187
Bode’s law, 324
Boffetta, G., 28, 153, 159, 332, 334
Bohr radius, definition, 347
boiling liquid, 5
boiling water, 324
Boltzmann constant, definition, 347
Chain reaction, 11, 89, 94, 290, 295
Challet, D., 51
Chamel, N., 293
Chan, Y.T., 187
Chang, H.K., 243
Chang, S., 326
Chang, T.S., 19, 22, 153, 319, 337
channeling, 277
chaos theory, 3
chaotic flows, 334
chaotic orbits, 32, 312
chaotic systems, 3, 54, 340
charge state, 348
Chatterjee, T.N., 343
Che, X., 8
chemical reaction rate, 14
chemical reactions, 340
Chen, K., 4, 17, 38, 47, 50, 54, 249, 250
Chepurnov, A., 335, 336
Chessa, A., 44
Chialvo, D.R., 15
Chian, A.C., 343
Chou, Y.P., 28, 303
Christe, S., 24, 26, 218, 221
Christensen, K., 44, 54, 56
chromosphere, 23, 26, 259, 277
chromospheric evaporation, 23, 28, 29, 224, 228, 308
chromospheric heating, 224
chromospheric network, 262, 278
chromospheric oscillations, 187
chromospheric temperature, 262
Chumak, O.V., 278
Ciliberto S., 8
Ciprini, S., 32, 34, 243, 246, 247, 291, 293
city size distribution, 9
city sizes, 13, 89
Clar, S., 56
Cleveland, F.M., 303
climate changes, 22
climate fluctuations, 14, 15, 18
climate phenomena, 22
Cliver, E., 26, 237, 238
cloud formation, 14, 15, 18
clouds, 136, 249
clumping algorithm, 278
CLUSTER, 332, 335
clusterization, 146, 151, 153, 164, 334
CME, 19, 25, 198, 228, 233, 237, 277, 299, 315, 322
angular size, 198
brightness, 198
geoeffective, 322
geometric aspect ratio, 198
latitude, 198
location, 198
shock, 317
velocity, 198
waiting time distributions, 162
goalulation, 295
coalescence, 330
coast line, 249, 251
coffee percolation, 338
Cognard, I., 32, 33, 242, 243
coherence length, 303
coherent growth process, 288
coherent noise, 151
coherent radio emission, 313
coin tosses, 112
collaborative evolution, 14
Colless, M., 291
collisions, 3, 22, 39, 282–284, 290, 311, 324, 326, 328
2-body, 282
Collura, A., 165
color spectrum, 126
communication satellite, 318
competitive game, 51
complex empirical orthogonal function analysis, 191
complex systems, 37
complexity measure, 273
complexity of time profile, 253
Compton emission, 291
comptonization, 32
concrete blender, 5
condensed matter physics, 293
conductive loss, 308
counter, 129
Conlon, P.A., 273–275
connectedness, 338
conservation laws, 44
conservation of angular momentum, 289
conservative system, 40, 64
Consolini, G., 19, 20, 22, 58, 319, 334, 337
Cont, R., 51
Cont-Bourchaud percolation model, 11
continental drift, 290
continental shelf, 18
continuity equation, 305
continuum limit, 83, 105
contribution diversity, 273
convection, 326
Earth, 16
solar, 63, 329, 343
convection zone, 299, 323
convective stars, 299
convective turbulence, 343
conveyor belt, 4
Conway, J.H., 46
cooling, 229
corona
 power spectrum, 276
 soft X-rays, 115
coronagraph images, 198
coronal approximation, definition, 348
coronal heating, 25, 29, 70, 165, 195, 211, 303
coronal hole, 315
coronal viscosity, definition, 348
Corral, A., 8
correlation dimensions, 342
correlation function, 274
correlation length, 303, 330, 331, 337
correlations, 211, 287
 exponential-growth model, 88
 logistic-growth model, 100
 parameters, 304, 311
 powerlaw-growth model, 93
cosmic rays, 89, 290, 296, 322
 spectrum knee, 296
cosmic voids, 268
cosmological model, 289
cosmology, 32
Cote, P.J., 8
cotton price, 9, 10, 13
Cottrell, A.H., 8
Coulomb logarithm, definition, 348
count rates, 122, 123
coupled pendulums, 39, 53
Cowie, P.A., 54
Cox, D., 140–142
Crab pulsar, 31, 242, 243, 294
crack propagation model, 17, 54
Craig, I.J.D., 28, 141, 161, 305
 craters, 15, 23, 277
 creeks, 251
Cretaceous-Tertiary era, 12
Creutz, M., 47
critical angle, 303
critical current, 22, 303
critical energy, 303
critical exponents, 44, 56
critical slope, 3, 5, 17, 290
critical state, 4
critical threshold, 288, 339
Crosby, N.B., 23, 26, 27, 65, 89, 104, 154, 157, 158, 161, 214, 215, 218, 220, 221, 311
Cross, C.A., 23, 281
cross-correlation function, 127
crossover frequency, 45
Crow, E.L., 136
crystals, 250, 324
cumulative frequency distributions, 203
current, 129
current cores, 163
current density, 58
current disruptions, 19, 20, 58
current sheets, 22, 68, 163, 312, 315, 319, 330
 geometry, 304
 heliospheric, 317
 cut-and-splice operation, 73
cutoff frequency, 124
cutoffs, 212, 237
 size distribution, 44, 67, 102
 waiting time distribution, 152
CV, 29, 31, 33, 80, 127, 136, 191
cyclon-like whirls, 325
cyclotron resonance, 332
 cyclotron-resonance acceleration, 296
 Cygnus X-1, 185, 186, 243, 245
Czerny, B., 128
Da Rocha, D., 32, 34, 289
da Silva, L., 15
damping, 38
dark matter, 268
dark matter clustering, 289
dark matter halos, 289
Darwin, C., 12, 51
Das, T.K., 26, 234, 235
data preprocessing, 212
Datlowe, D.W., 26, 217, 218
Daubechies, I., 187
Dauphin, C., 313
Daivdensen, J., 150
dayside magnetopause, 317
DC current, 129
DC electric field, 312
DC glow, 8
de Boer, J., 53
de la Torre, A., 53
de Michelis, P., 22, 337
de Sousa Vieira, M., 54
de-excitation lines, 308
dead-time corrections, 212
Deb, S., 191, 193
Debye length, definition, 348
decimetric millisecond spikes, 126, 234, 236, 330
decimetric pulsations, 126, 234
decimetric radio emission, 217, 235, 256
decimetric type III bursts, 234, 256
degrees of freedom, 340
Delachem, Ph., 187
Dendy, R.O., 31, 33, 58, 329
Dennis, B.R., 23, 24, 26, 63, 65, 201, 218, 224
denoising, 178, 182
density fluctuations, 290
density models, 195
deoxyribonucleic acid, 9
depinning model, 17
detection methods, 171
detection of events, 147, 171
 CME, 198
 Fourier-filter, 182
 highpass filter, 180
 image-based, 193
 peak-based, 182
 principal component analysis, 191
 threshold-based, 174, 175, 194
 wavelet-based, 187
deterministic chaos, 340
devil’s staircase, 52
Devonian era, 13
Dhar, D., 44
Dickman, R., 44
dictionary, 10
diehard, 46
differential emission measure distribution, 306
differential frequency distributions, 202
differential probability distribution, 120
diffusion
 1-D, 327
 anomalous, 52, 151, 329, 333
 Brownian, 326
 coefficient, 109, 328, 330
 diffusion-limited aggregation, 324
 diffusion entropy, 161
 diffusion equation, 49, 108
 fractal, 262
 gradual, 79, 245, 296
 heat transport, 327
 hyper-diffusion, 109, 329
 self-organization, 326
 viscous, 79
diffusive Fermi shock acceleration, 296
diffusive second-order Fermi acceleration, 311
diffusive shock acceleration, 311, 313
digital image, 258
digital image processing, 194
dikes, 18
dimensional diversity, 273, 274
dinosaurs, 14
Diodati, P., 15, 18
diodes, 126, 129
discharge plasma, 8
discrete points, 122
disease spread, 14
diseases, 338
disk dynamo, 80
dislocation network, 8
dissipation drivers, 44
dissipative system, 2
distractions, 290
distributions
 beta, 121
 binomial, 112
 Boltzmann, 326
 differential probability, 120
 exponential, 84, 96, 119, 121, 140, 207
 Galton, 135
 gamma, 121
 Gaussian, 115, 121, 326
 log-normal, 136, 278
 Pearson’s, 121
 Poisson, 117, 118
 powerlaw, 207
 probability, 203
 pulse durations, 133
 rank-order plots, 206
 waiting times, 142, 148
 Zipf plot, 208
divergence-freeness, 73, 298
Dmitruk, P., 28, 313, 330, 332
DNA, 9
domain wall boundaries, 44
Dominquez Cerdena, I., 278
donor star, 29
double-ribbon flare, 23
Dow Jones index, 11
Doxas, I., 22, 337
Doyle, A.C., 321
drainage networks, 14, 15
Drake, J.F., 26, 226, 228
Drake, J.J., 165
drawing system, 290
Dreicer electric DC field, 313
Dreicer field, definition, 348
drift-kinetic Alfvén vortex motions, 335
dripping faucet model, 22
dripping handrail model, 341
Drossel, B., 8, 19, 56
droughts, 127
drunkard random-walk, 328
ducting, 277
Dulk, G.A., 256, 314
Duncan, R.C., 32, 33, 244
Duolun crater, 18
duration, 201
 event, 141
 exponential-growth model, 86
 logistic-growth model, 96
 powerlaw-growth model, 91
dust devils, 22
dust grains, 18
dust particles, 326
dust storms, 22
dust, circumplanetary, 22
dusty space plasma, 5
dwarf galaxies, 289
dwarf star, 29
dynamic spectrum, 314
dynamo, 80, 290
Earth, 280
earth crust, 16
Earth rotation, 126
Earth's bowshock, 324
Earth-directed CME, 316
earthquakes, 2, 14–16, 139, 290, 321
 aftershocks, 16, 139, 140, 146, 149, 151, 194
damage, 16
calculations, 17
fault lengths, 150
fault network, 150
foreshocks, 151
fractals, 150
Gutenberg–Richter law, 150
Gutenberg-Richter law, 149
main shocks, 151
Omori’s law, 149, 150
precursors, 16
productivity law, 150
rupture area, 16
scaling law, 150
waiting times, 17, 142
Eastwood, J.P., 163, 164
economic benefit, 9
economic capital, 290
economic crisis, 11
economic growth, 9
economic organizations, 51
economic system, 1
economy, 136
Eddey, S.D., 154
eddies, 325, 329, 332
Eggen, O.J., 289
Einaudi, G., 330
Einstein, A., 83, 171, 249
EIT waves, 198
EIT/SOHO, 24, 229, 279
El Farol problem, 11
elapsed times, 139
Eldredge, N., 12, 14, 15
electric conductivity, 58
electric current density, 330
electric currents, 290
electric DC field, 312
electric DC field acceleration, 312, 313
electric discharge, 290
electric fields, 32, 312
electric force, 3
electric signals, 127
electrical conductivity, definition, 348
electromagnetic waves, 324
electron beams, 163, 233, 314
electron collision frequency, definition, 348
electron collision time, definition, 348
electron density, 195, 272
electron flux, 237
electron gyrofrequency, definition, 348
electron gyroradius, 333
definition, 348
electron injection spectrum, 310
electron Larmor radius, 333
electron mass, definition, 347
electron plasma frequency, definition, 348
electron radius, definition, 347
electron scale, 332
electron thermal velocity, definition, 348
electron trapping, 314
electron-cyclotron maser, 234, 313, 314
electron-positron plasma, 324
electron-V olt, definition, 347
electrons, 129, 296
electrostatic potential, 290
elementary mass, definition, 347
Ellerman bombs, 233, 262
elliptical galaxies, 32, 34, 246
embedding dimension, 342
emergent active regions, 339
emergent structures, 44
emerging magnetic bipoles, 278, 301
emission measure, 270, 272, 275
emission measure distribution, 306
emission measure peak, 306
empirical mode decomposition method, 191
end time, 175, 226
energy
 build-up, 161
decay rate, 85
 exponential-growth model, 87
 logistic-growth model, 94
models, 195
 powerlaw-growth model, 91
scaling, 233
Index

spectrum, solar flares, 308
storage time, 89
English literature, 10
enhancement, 186
ephemeral magnetic regions, 278
epicenter, 16
epidemics, 15
epileptic seizure, 15
episodic energy dissipation, 303
episode extinctions, 12
epizonal mineral deposits, 15, 18
equation of motion, 38
equatorial bands, 325
equilibrium, 51
equilibrium state, 14
Erickson, W.C., 153
Eros, 282
erosion, 7, 277
Euclid, 249
Euclidean dimension, 249, 257, 274
Euclidean fragmentation, 280, 282–284
Euclidean scaling, 269
Euclidean volume, 271
Europa, moon of Jupiters, 324
EUV bright points, 233
EUV brightenings, 233, 279
EUVE/Deep Survey, 239
EUVI, 165
evaporation, 5, 18
event definition, 195
event discrimination, 195
event selection, 195, 233
evolution, 12, 15, 51
evolution function, 84, 85
evolutionary ecology, 14
evolutionary trees, 15
evolving species, 321
expanding universe, 290
expansion phase of substorm, 317
Explorer 33, 226
Explorer 35, 226
exponential distribution, 84, 96, 119
exponential time profile, 288
exponential-decay pulses, 132
exponential-growth model, 84, 238, 288
exposure time, 195
external forcing, 22, 337
extinction, 13, 15, 46, 51
extinction rate, 14
extragalactic, 322
extragalactic jets, 291
F-pentomino, 46
Fabry-Perot spectrometer, 258
family names, 10
Fast Fourier Transform, 124, 125, 127, 182
fault lengths, 150
fault network, 150
faults, 16
Feder, H.J.S., 17, 54
Feder, J., 54
Feigenbaum, J.A., 11, 13, 51
Feldman, U., 26, 227, 228
Fermi acceleration, 313, 322
Fermi second-order acceleration, 311
Fermi shock acceleration, 296
Fermi, E., 89
ferns, 249
Feynman, J., 26, 237, 238
fibrous material, 8
Field, S., 8, 45
Fiig, T., 45
filament eruptions, 23
filaments, 277
filling factor, 308
films, 126
filter, 127, 180, 182, 322, 323
financial crashes, 11, 51
financial market, 10
financial physics, 11
finite-size effects, 42, 47, 56, 58, 104, 151, 215, 221
firms, 10
first-order Fermi acceleration, 313, 322
Fisher, D.S., 17, 54
fishes, 324
fissures, 18
fittest species, 12
Fitzenreiter, R.J., 26, 234
fjords, 251
flare duration, 306
flare stars, 127, 239
quiescent emission, 165
waiting time distributions, 165
flatness problem, 33, 290
floods, 17, 127
flows, 325, 326
fluence, 201
fluid, 326
fluvial systems, 22
flux noise experiment, 45
flux threshold, 25
flux tubes, 263
Flyvbjerg, H., 52
foam, 8
Focke, W.B., 31, 134
Index

Fogedby, H.C., 45
footpoint motion, 330
forced pendulum, 340, 341
forced self-organized criticality, 19
forced-criticality model, 153, 337
forecast, flares, 161
foreshocks, 151
forest, 8
forest fires, 14, 15, 18, 104, 105, 290, 338
forest-fire model, 54
fossil history, 52
fossil records, 13
four-sector pattern, 316
Fourier decomposition, 187
Fourier filter, 182
Fourier power spectrum, 184, 187
2-D, 275
Fourier transform, 122, 130
Fourier-based recognition method, 260
Fröhlich, C., 187
fractal dimension, 249, 342
box-counting method, 260
linear size-area method, 260, 261
perimeter-area method, 258, 260
fractals, 4, 14, 32
1-D, 250
2-D, 256, 271
3-D, 267, 268, 271
area scaling, 264, 270
box-counting method, 257, 274
Brownian motion, 328
Cantor dust, 250
Cantor set, 251
chromosphere, 259
earthquakes, 150
evolution, 52
filling factor, 270
galactic large-scale structure, 289
geology, 250
geometry, 195
geophysics, 250
Hausdorff dimension, 250, 257, 258, 264, 267
human physiology, 250
Koch curve, 251
magnetogram, 273
middle-third-erasing, 250
photosphere, 259
radio bursts, 253
radio emission, 253
Sierpinski triangle, 257
solar flares, 258, 262, 264, 270
spatial scaling, 264
sunspot number, 253
volume scaling, 195, 270, 308
fractional Brownian motion, 253
fracture, 8, 32
Fragos, T., 278
free energy, 290
free-free emission, 229, 256, 313
accretion disks, 295
French, N.H.F., 15, 19
French, R.G., 22, 284
frequency distributions, 201
accretion disks, 245
accuracy, 212
auroral blobs, 19
basics, 202
binning, 202
black hole objects, 245
blazars, 246
correlations, 221, 223
cosmic rays, 296
Crab pulsar, 242
cumulative, 103, 203, 239
cutoff, 67, 102, 221, 237
differential, 202, 239
Dow Jones index, 11
durations, 87, 91, 96, 97, 221
earthquakes, 16
exponential, 209
exponential-growth model, 87
extinctions, 13
flare energies, 305
integrals, 210
lattice simulations, 41, 49, 56, 58, 62, 65, 68, 69, 71, 98, 100
log-normal, 242
magnetospheric physics, 214
numerical generation, 208
numerical simulations, 213
particle acceleration, 312
peak counts, 221
peak energy rate, 85, 90, 97
powerlaw, 210
powerlaw-growth model, 92, 93
pulsar glitches, 242
radio bursts, 233
rice pile, 6
SEP, 237
SGR, 244
solar flare EUV, 229
solar flare hard X-rays, 217
solar flare soft X-rays, 224, 227, 228
solar flares, 23, 25, 217, 222
solar radio bursts, 233, 342
stellar flares, 29, 239
total counts, 221
total energy, 88, 92
uncertainties, 212
Frette, V., 6–8
Freund, P.G.O., 11, 13, 51
Frick, P., 187
friction, 3, 8, 17, 38, 53, 329
dynamic, 53
static, 53
Fritzova-Svestkova, L., 153
Frontera, F., 134
frying pan, 324
Fuligni, F., 134
Fuyii, Y., 15, 18
FWHM, 96
G-band, 276
G¨udel, M., 28, 29, 33, 165–167, 239, 240
Gabriel, S.B., 26, 164, 237, 238
Gaite, J., 268
galactic arms, 324
galactic collisions, 290
galactic disks, 289
galactic spirals, 32, 34, 338
galaxy, 244, 335
galaxy clusters, 32, 268, 289
galaxy distribution, 289
galaxy formation, 289, 290, 322
galaxy groups, 289
galaxy redshift survey, 289
galaxy superclusters, 289
Gallagher, P.T., 198, 199, 260, 262
Galsgaard, K., 28, 71–73, 105, 299, 303, 330
Galtier, S., 28, 161, 330
Galon, F., 111
gamma equation, 53
gamma rays, 23, 26, 217
blazars, 291
solar flares, 308
gamma-ray bursts, 104, 139, 180, 187, 244, 296
gamma-ray lines, 220
gap equation, 53
Garcia-Pelayo, R., 32, 33, 242
Gardner, M., 46
Gaskell, C.M., 136
Gaussian distribution, 83, 115
Geisel, T., 340
gene family frequency, 89
general relativity, 293
generator function, 251
genes, 14
geoeffective CME, 316, 322
geological layer, 14
geological system, 1
geomagnetic activity, 318
geomagnetic storms, 316, 318
geomagnetic substorms, 317
geometric dimensions, 249
geophysics, waiting times, 149
GEOTAIL, 215
geotail, 19, 334, 340
Gergely, T., 153
Gerola, H., 338
Gerontidou, M., 26, 238
giant pulses, 294
Gibbs, J.W., 321
Gil, L., 44
Giller, D., 8
Ginga, 167
giraffe, 324
Giuliani, P., 148
gliders, 46
global attractor, 40
global communication, 316
global conflict, 12
global warming, 18
Glukhov, S., 28, 161, 315
GOES, 159, 162, 163, 185, 186, 226, 227, 229, 299, 316
GOES flare class, 264
Gogus, E., 32, 33, 243–245
Goldberger, A.L., 15, 250
Goldstein, M.L., 332
Golitsyn, G.S., 298
Goltz, C., 150
Gomez, D.O., 28, 275, 276, 330
Gonzales, R.C., 194
Gould, S.J., 12, 14, 15
Gower, J.F.R., 32, 33, 242, 243
grandiloquent dictionary, 10
granularity, 3
granulation, 5, 259, 260, 262, 275, 324
granules, lifetime, 301
Grassberger, P., 53, 54, 56, 340–342
Grasso, J.R., 15, 18
gravitational collapse, 3, 290
gravitational constant, definition, 347
gravitational energy, 79
gravitational force, 3
gravitational potential, 3, 7, 39
gravitational self-organization, 289
gravity, 3, 289, 290
2-body system, 3
n-body system, 3
gravity-driven mass motion, 17
Great Britain coast line, 251

Index

Greco, A., 164, 334
Greenhough, J., 231, 233
Greenwich Observatory, 278
Grieger, B., 15, 18
Grigolini, P., 161
Grinstein, G., 44
ground-level enhancements, 322
growth phase of substorm, 317
growth time, 96
Guckenheimer, J., 340
Gudiksen, B.V., 303
Gurman, J.B., 198, 231, 233
Gutenberg, B., 15, 16, 201
Gutenberg–Richter law, 150, 201
Gutenberg-Richter law, 16, 149
Guyon, E., 44
gyroresonance emission, 256, 313
gyroresonant wave–particle interactions, 313
gyroresonant waves, 314
gyrosynchrotron emission, 217, 233–235, 313
Hα, 23, 26, 217, 233, 262
Hölder exponent, 191
Haensel, P., 293
Hagenaar, H.J., 278, 279
Hale cycle, 343
Hall, M., 14
Hall-MHD, 334
Halo-CME, 316
Hamilton, R.J., 25, 63, 65, 66, 68, 70, 71, 98–100, 102, 109, 159, 186, 201, 222, 268
Hamon, D., 28, 148, 149, 155
hard state, 78, 167
Harding, A.K., 341
harmonic modes, 187
harmonic oscillator in fluid, 340
harmonic ratio, 284
Harrison, R.A., 153
Harvard Centroid-Moment Tensor Data Base, 16
Harvey, K.L., 278
Hathaway, D.H., 262
Hausdorff dimension, 250, 257, 258, 264, 267
Hawley, J.F., 295
He II line, 276
heart pacemaker, 340
heart rate, 15
heat capacity, 290
heat transport, 327
heating
 function, 303
 non uniform, 303
 turbulent, 330
 uniform, 303
heavy atomic nuclei, 296
Heavyside step function, 61
hectometer radio emission, 233
height correlations, 44
Helander, P., 58, 329
Held, G.A., 6, 8, 57
helicity conservation, 303
helicity dissipation, 28
heliocentric angle, 261
helioseisimology, 187
heliosphere, 19, 25, 332
heliospheric current sheet, 317
helium, 296
helium burning, 293
hematopoietic stem cell, 8
hemispheres, 274
Henley, C.L., 18, 19, 56
Henley, R.W., 15
Hergenstein, S., 14, 15, 17, 18, 54, 56, 328
Herrmann, H.J., 12, 13, 15, 18, 50
Herz, A.V.M., 15
Herzel, H., 342
Hewett, R.J., 273
hexagonal cell pattern, 324
Hey, J.S., 233
Heyerdahl, E., 19
Heyvaerts, J., 330
hierarchichal SOC model, 322
highpass filter, 180, 198, 264
highways, 50, 126
Higuchi, T., 252, 253, 343
HII regions, 290
Hinode, 299
Hirzberger, J., 260
Hiscott, R.N., 15, 18
histogram binning, 212
Hnat, B., 163, 333
holes of electrons, 129
homogeneity, 1, 2
homogeneous Poisson process, 142
honeycomb structure, 5
Hopfield, J.J., 15
Horbury, T.S., 163
horizon problem, 33, 34, 290
horse kicks, 8
Horton’s law, 18
Horton, W., 22, 337
Hoshino, M., 19, 20
host galaxy, 291
Hotelling transform, 191
Hough transform, 198
hourglass, 322, 323
Hovius, N., 15, 18
Hoyng, P., 186
ice, 290
ice age, 14
Ikeuchi, S., 32, 34
image processing, 194
immune trees, 19
IMP, 234, 237, 332
incoherent process, 287, 288
incoherent radio emission, 313
incomes, 89
independence, statistical, 288
independent component analysis, 191
index, Poisson noise, 175
induction equation, 58, 70
inelastic impact, 284
inertial effects, 5
inertial range, 102
infalling matter, 291
infection, 8
inflation, 33, 34
inflationary model, 289
infrared, 126
infrared emission, accretion disks, 295
Ingersoll, A.P., 22
inheritance process, 10
initial conditions, 42
initial mass function, 32, 34
initiator function, 251
instability, 3
accretion disks, 29, 290
Balbus–Hawley, 80, 295, 296
beam-driven, 233, 234, 313, 314
bump-in-tail, 256
current-driven, 19, 337
current-driven kinetic, 63
electron-cyclotron maser, 234
kinetic, 319
loss-cone, 233, 235, 314
magnetic, 299
magneto-rotational, 335
modulational, 242
numerical, 65
oscillating, 234
Rayleigh–Taylor, 295
SOC, 290
threshold, 39
instantaneous electron spectrum, 309
instrumental bias, 25
instrumental sensitivity, 25
inter-earthquake times, 151
inter-occurrence times, 139
interface depinning model, 14, 17
interface dynamics, 8
intermittency fluctuations, 343
intermittent turbulence, 332, 334, 337
internet files, 89
internet traffic, 13
interplanetary magnetic field, 316
interplanetary type III bursts, 234
interstellar medium, 32, 34, 335
invasion percolation model, 14, 44
inventivity, 8
inventor, 8
Inverarity, G.W., 330
inverse Fourier transform, 127, 182
ion collision frequency, definition, 348
ion collision time, definition, 348
ion gyrofrequency, definition, 348
ion mass density, definition, 348
ion plasma frequency, definition, 348
ion thermal velocity, definition, 348
ion/proton mass ratio, definition, 348
ionosphere, 19, 318, 322
irregular time series, 251
irregularity of time profile, 253
Index

ISEE-3/ICE, 66, 67, 154, 155, 157, 220, 226, 227, 244, 332
Isham, V., 140–142
Ising models, 340
isotropic, 63
Ito, K., 16, 150
Ivezic, Z., 23, 282, 283
Jähne, B., 194
Jackson, E.A., 94
Jaeger, H.M., 5, 8
Jain, A.K., 194
Jan, N., 53
Jansky, definition, 347
Janssen, K., 260, 261
Jaynes, E.T., 142
Jeans mass criterion, 290
Jedidke, R., 282
Jensen, H.J., 4, 38–40, 44, 45, 53, 56, 321
Jensen, M.H., 8
Jess, D.B., 187
Jogi, P., 8
Johansen, A., 11, 13, 15, 51
Johnston, A.C., 16
Josephson junction, 340
Joyce, J., 10
Juergens, H., 250
Juno, 282
Jupiter, 22, 282, 283
Jupiter atmosphere, 324, 325
Jupiter decametric emission, 314
Jupiter eddies, 22
Jupiter latitudinal bands, 22
Jupiter moon, 324
Jupiter red spot, 22, 325
Jupp, P.E., 195, 214, 231, 308
Kadanoff multiscaling, 273
Kaiser, G., 187
Kakinuma, T., 26, 234
Kaladze, T.D., 324
Kalapotharakos, C., 32, 34, 324
Kanter, L.R., 16
Kao, Y.H., 45
Karhunen–Loève transform, 191
Karlicky, M., 330, 342, 343
Kashyap, V.L., 28, 33, 165, 240
Kasischke, E.S., 15, 19
Kato, T., 31, 33
Katsukawa, Y., 115–117
Katz, J.I., 15
Kawasaki, K., 8
Kennel, C.F., 335
Kenny, B.G., 32, 33, 242
Keplerian disk, 295
kernel function, 187
kinematic viscosity, 80, 329
kinetic energy, 3, 17, 39, 202, 290, 326
Kishimoto, Y., 8
Klein, W., 54
Klimas, A.J., 19, 22, 63, 319
Klvanova, M., 153
Knopoff, L., 17, 53
Koch curve, 251
Kolmogorov entropy, 342
Kolmogorov power spectrum, 163
Kolmogorov spectrum, 275, 330, 332, 334, 335
Kolmogorov turbulence, 326
Kolmogorov, A.N., 274
Kopnin, S.I., 15, 18
Kouveliotou, C., 244
Kovacs, P., 187, 334
Kozelov, B.V., 19, 20
Krakhman power spectrum, 163
Krasnoselskich, V.V., 28, 303
Kremlovsky, M.N., 343
Krucker, S., 24, 26, 195, 229, 231, 308
Kucera, T.A., 25, 26, 29, 221, 280
Kuijpers, J., 296
Kundu, M.R., 26, 234
Kurths, J., 342, 343
Lagrangian point, 293
laminar flow, 3
laminar times, 11, 139
Landau–Ginzburg theory, 44
landfall, 3
Landry, C.C., 15, 18
landslides, 14, 15, 17
Langer, J.S., 54
Langevin equations, 340
Langmuir emission, 314
Langmuir turbulence, 313
Langmuir waves, 163, 314
language, 10, 13
Laplacian, 60
Large Magellanic Cloud, 290
Laroche, C., 8
LASCO, 163, 198
laser, 340
lattice models, 8, 25, 28, 37, 39, 41
lava flows, 18
Lawrence, A., 128
Lawrence, H.K., 260
Lawrence, J.K., 191, 260, 262, 273, 274, 330
Lazarian, A., 335, 336
magnetic reconnection, 19, 23, 25, 28, 29, 63, 78, 162, 217, 237, 277, 290, 296, 299, 304, 315, 322, 330, 331, 337
magnetic Reynolds number, 329
definition, 348
magnetic separators, 305
magnetic storms, 19, 315
magnetic stressing, 290, 295, 296, 299
magnetic twisting, 299
magnetic vector potential, 298
magneto-convection, 63, 258, 259, 262, 299, 301, 322, 324, 326
magneto-rotation instablility, 335
magneto-friction, 290
magnetogram, 273, 275, 278
power spectrum, 275
magnetospheric boundary layers, 335
magnetospheric physics
frequency distributions, 214
waiting times, 151
magnetospheric storms, 315
magnetotail, 20, 22, 58, 153, 317, 334, 338
magnetotail plasma sheet, 215
Magnus force, 244, 290
Magun, A., 342
Majumdar, S.N., 44
Makishima, K., 79, 128
Malkov, M.A., 313
Mallat, S.G., 187, 194
mammals, 14
Mandelbrot, B.B., 10, 13, 17, 249, 250, 260
Manna, S.S., 44
Manrubia, S.C., 53
Mantegna, R.N., 11, 13
Marchesoni, F., 8
Mare Tranquillitatis, 281
Mariner, 332
Mars, 22, 282, 326
Martens, P.C.H., 275
Martian fluvial system, 22
Maslov, S., 14, 53
mass clumping, 296
mass infall, 293, 295, 296
mass loss rate, 315
mass transfer, 245, 293
master equation, 28, 161, 314, 315
material physics, 7
Matlisky, T.A., 341
Matsuzaki, M., 16
matter infall, 29
Matthaeus, W.H., 331, 332, 334
Maxwell’s electrodynamics, 298
Maxwell’s equations, 58
May, R.M., 94
McAteer, R.T.J., 187, 188, 260, 262, 329
McHardy, I.M., 128, 134
McIntosh, S.W., 25, 75, 198, 231, 233, 268, 269
McTiernan, J.M., 144, 155–158, 166, 332
MDI/SOHO, 278
mean, 115
mean molecular weight, definition, 348
mean-field theory, 44, 52
measles epidemics, 15
mechanical resonances, 284
mechanical system, 1
medical diseases, 338
Medvedev, M.V., 8
Meisel, L.V., 8
Melatos, A., 32, 33, 242–244
Melendez, J.L., 26
Melnick, J., 32, 34, 291, 292
memory, 15, 159, 178, 191
Mendoza, B., 238
Mercier, C., 26, 234, 235
Mercury, 22
merging structures, 337
meridional flow, 327
meso-granulation, 259, 262
Meszarosova, H., 26, 235, 343
metastable states, 38, 39, 340
Metcalfe, T.S., 282
meteoroid impact, 280, 290
meteorological changes, 14
metric oscillation bursts, 126
metric radio emission, 217
metric type III bursts, 126
metropolitan areas, 10
Meunier, N., 260, 261, 278
Mexican hat function, 191
Mexican hat mother wavelet, 147
Meyer, Y., 187
MHD, 58
discretization, 28, 70, 298, 338
Hall effect, 334
induction equation, 329
models, 161
MURAM code, 258
numerical simulations, 303, 330, 333
turbulence, 28, 109, 148, 159, 163, 164, 178, 182, 276, 313, 329–332
turbulent cascade, 326, 332
waves, 332
microflares, 23, 25, 26, 165, 217, 221
microfracturing, 8
microsatellites, 215
microscope, 326
microscopic scales, 251
microwave background, 32
middle-third-erasing, 250
Middleton, A.A., 54
Milano, L.J., 330
Milky way galaxy, 324
Miller, J.A., 313
millimeter radio emission, 233
millisecond spikes, 126
Milovanov, A.V., 22, 332, 338
Milshtein, E., 44
minimum current, 299
Mininni, P.D., 343
minority game, 11
Mira variables, 191
Miroshnichenko, L.I., 26, 218, 220, 237, 238, 313
misalignment angle, 73
Mitra-Kraev, U., 28, 75
Miyamoto, S., 128
modulational instability, 242
Moffat, J.W., 33, 34
molecular cloud, 290
molecular grid, 250
molecular self-assembly, 324
molecules, 326
moment of inertia, 269
monofractal, 273
Monte–Carlo simulations, 83
stellar flares, 240
time profiles, 240
accretion disks, 168
event detection, 172
exponential-growth model, 172
flare stars, 166
frequency distributions, 213
master equation, 315
percolation, 338
waiting times, 144
Moon, 280
Moon, Y.J., 154, 161, 163
moons, 22
Morales, L., 25, 73–76, 299
Mordvinov, A.V., 187
Moreira, J.G., 8
Morley, P.D., 32, 33, 242
Morley, S.K., 153, 319, 338
morphological opening operator, 198
Morse code, 251
Mossner, W.K., 56
mother wavelet function, 187
Mount Wilson Observatory, 278
mountain slides, 17, 277
mountains, 249, 321
Moussas, X., 343
Mousseau, N., 8
moving average model, 178
moving magnetic features, 278
mudslide, 7
Muller, R., 260
multi-resolution methods, 187
multi-scale methods, 182
multifractals, 17, 273
Cantor set, 333
earthquakes, 150
turbulence, 330
multi-periodicity, 343
multiple-level tracking method, 260
multiple-strategy models, 50
multiplicative factor, 89
multiplicative processes, 10, 135, 287, 288, 295
Muraki, Y., 134
Murgath, F., 194
mutation, 9, 12, 14, 51, 52
n-body simulations, 32, 39
n-body system, 340
Negatani, T., 12, 13, 50
Nagel, K., 12, 13, 15, 18, 47–50
Nakamura, T., 282
Nakanishi, H., 54
nanoflares, 24–26, 69, 117, 121, 165, 194, 195, 229, 233, 263, 264, 303
Nasdaq100, 11
natural selection, 12
navigation networks, 316
Neptune, 22
nerve cell spiking, 15
nerve membranes, 126
Nesme-Ribes, E., 343
network, 8, 13
Neugebauer, H.J., 18
Neupert effect, 224, 228
neural reverberations, 15
neural-network learning method, 198
neuron firing, 15
neutron capture line, 220
neutron monitor, 237
neutron star, 242, 244, 293
neutron star crust, 32, 244, 294
Her X-1, 341
neutron starquakes, 293–295
neutron stars, 127, 295
New York, 9
Newman, M.E.J., 13, 151
newspapers, 10
next-neighbor interactions, 37, 100, 105, 113, 114, 321
Nicholson, P.D., 22, 284
NICMOS camera, 290
Nicol, R.M., 333
Nile river, 15, 18
Ning, Z., 26, 234, 236
Nishizuka, N., 26, 231, 233
Nita, G.M., 26, 234–236
NIXT, 275
NOAA catalog, 235, 237
Noever, D.A., 18
noise, 195, 261
1/f spectrum, 4, 34, 44, 45, 127, 184, 293
black noise, 127, 329
Brownian, 126, 127
flicker noise, 31, 78, 127, 129, 132
noise-free data, 175, 180
nomenclature, 126
photon noise, 175
photons, 195
pink noise, 127
Poisson, 129
Poisson noise, 129
red noise, 127, 132
shot noise, 32, 129, 132, 167
shot noise spectrum, 131, 133
spectra, 126
white noise, 44, 122, 124, 127
non-local communication, 108
non-periodic time profiles, 187
non-SOC processes, 321
nonconservative systems, 44
noncooperative evolution, 14
nonequilibrium, 19
nonlinear chaotic systems, 340
nonlinear dissipative system, 2
nonlinear force-free field, 299
nonlinear function, 84
nonlinear system, 1, 2
nonpotential magnetic energy, 299
nonpotential magnetic energy build-up, 301, 302
nonstationary Poisson process, 142
nonthermal electron spectrum, 309
nonthermal electrons, 308
nonthermal emission, 127, 134, 308
nonthermal energy, 202
solar flares, 308
nonthermal spectrum, 311
Noonan, E.J., 28, 305
Nordlund, A., 303, 330
Nori, F., 8
Norman, J.P., 161
Norris, J.P., 244, 341
North America, 9
north-south asymmetry, 343
Norway coast line, 251
Norwegian coast, 18
Norwegian fjords, 7
Nottalé, L., 32, 34, 289
nova outbursts, 31
Nowak, M.A., 134
Nozakura, T., 32, 34
nuclear burning, 290
nuclear chain reaction, 94
nuclear fusion, 31
nuclear physics experiment, 9
numerical SOC models, 37
Nurujjaman, Md., 8
Nyquist frequency, 124, 131
O’Brien, K.P., 8
O’Brien, P.T., 32, 34
O’Toole, D.V., 15
oblate, 294
occurrence rate, 140
ocean evaporation, 18
ocean ridge spreading centers, 16
ocean transportation, 9
ocean trenches, 16
Ochelkov, Yu.P., 238
OFC model, 28, 148, 149, 155
Ohm’s law, 58, 153
Okuzono, T., 8
Olami, Z., 17, 18, 44, 54, 148, 155
oligarchic growth, 324
Olmedo, O., 198
Olson, C.J., 8
Omori’s law, 149, 150
Omori, F., 142, 146, 149, 150, 157
opalescence in fluids, 324
optical emission, 23, 31
optimistic buyers, 290
orbital period, 154
orbits
 3-body problem, 342
 n-body problem, 342
Ordovician era, 13
oscillating chemical reactions, 324
oscillations, 126, 187
 SGR, 295
oscillators, 8
OSO-3, 226
Osokin, A.R., 28
Osorio, I., 15
Osten, R.A., 165
Otsuka, M., 54
Otter, R., 77
Paczuski, M., 8, 12–14, 17, 38, 47–49, 51–54, 56, 161
Pallas, 282
Palm and Khinchin theorem, 141
Palomar Leiden Survey, 282
pandemic disease spread, 14
Paniveni, U., 260
Pankine, A.A., 22
Parker spiral, 316
Parker, E.N., 63, 73, 75, 302–304, 316
particle acceleration, 23, 28, 290, 311, 340
cosmic rays, 296
particle physics experiments, 112
particle precipitation, 23, 217, 318, 322
Patriarca, M., 8
Patrick, G.J., 164
pattern recognition algorithms, 195
Pavlidou, V., 31, 33, 80, 295, 296
peak energy release rate, 84, 90, 95
exponential-growth model, 84
logistic-growth model, 95
power-law-growth model, 90
peak flux, 201
peak luminosity, 307
peak method, 147
peak time, 175, 226
Pearce, G., 153, 154, 157, 158
Pearson, K., 121
Peitgen, H.O., 250
Pelletier, J.D., 15, 18
pendulum, 2, 53, 340, 341
percolation, 324
active regions, 338, 339
models, 14, 44, 51, 262, 277, 278, 338
simulations, 338
Perez-Enriquez, R., 26, 218, 220
perimeter-area method, 258, 260
periodic attractors, 44
periodic pulses, 124
permeable substance, 338
Permian era, 13
permutations, 112
perpetuum mobile, 3
Petri, A., 8
Petrosyan, A., 332
phase transitions, 19, 324, 340, 341
PHEBUS, 220
Phillpotts, E., 139
phone calls, 7
photon arrival times, 165
photon noise, 116, 127, 195
photon waiting times, 165, 167
photosphere, 5, 259, 277
temperature, 347
photospheric intranetwork, 273, 278
photospheric network, 259, 273, 301, 305
power spectrum, 275
photospheric oscillations, 191
phylogenetic trees, 15
physical system, 1
physics-free models, 83, 288
Picasso, P., 37
Pietronero, L., 44
pine trees, 8
pinned flux lattices, 8
pinning force, 244
pion radiation, 308
Pioneer, 332
pions, 308
pitch angle distribution, 313
pitch angles, 312
Piton de la Fournaise volcano, 18
Pizzochero, P.M., 32
Pla, O., 8
plages, 273
Planck constant, definition, 347
Planck, M., 321
planetary orbits, 324
planetary rings, 22
planetary system formation, 22
planetary systems, 324
planetesimals, 282
planets, 22
plasma confinement, 8, 329
plasma cooling, 229
plasma emission, 217, 235, 256, 313
plasma heating, 23
plasma resonances, 19
plasma sheet boundary layer, 340
plasma sheets, 22
plasma-β parameter, definition, 348
Podesta, J.J., 163, 333
Podladchikova, O.V., 121, 198, 303
Podlazov, A.V., 28
point patterns, 122
point processes, 122, 140
Poisson distribution, 117, 118
Poisson process, 7, 140
inhomogeneous, 142
nonstationary, 142, 289
stationary, 142, 288
Poisson statistics, 83, 175
Poisson, S.D., 117
POLAR/UVI, 19, 215
polarized brightness image, 198
Poliakov, A.N.B., 15, 18
political events, 11, 290
Polygiannakis, J.M., 187, 343
polymer, 8
population density, 12
population dynamics, 340
population growth, 46, 89
population statistics, 136
porous materials, 338
postflare loops, 23
potential energy, 202
potential magnetic energy, 299
potsoil landscape, 7, 8
Pouquet, A., 28, 330
power outages, 127
power spectrum, 45, 122, 124, 184, 185
 Brownian motion, 326
 interstellar medium, 335
 Planckian, 78, 129
 pulses, 133
power spectrum analysis, 275
 active regions, 276
 bright points, 276
 corona, 276
 magnetogram, 275
 omnidirectional, 275
 photospheric network, 275
 quiet Sun, 275
powerlaw size distribution, 4
powerlaw slope, critical value, 211
powerlaw slopes, 211, 239
 exponential-growth model, 89
 large-event bias, 220
 waiting times, 144, 146
powerlaw-growth model, 89
Poynting flux, 319
precursors, 16, 51
Press, W.H., 126
pressure, 326
prices, 50
Priest, E.R., 330
principal component analysis, 182, 191
probability distribution, 84, 112, 140, 142, 203
Procaccia, I., 341, 342
producers, 11
productivity law, 150
profit, 290
Proper Orthogonal Decomposition, 191
protein family frequency, 89
protein folding, 324
proton acceleration, 313
proton flux, 237
proton mass, definition, 347
proton scale, 332
proton star, 295
proton/electron mass ratio, definition, 347
protons, 237, 296
protoplanets, 324
Prozorov, R., 8
Prussian cavalry, 8
publications, 8
Pudovkin, M.I., 22, 319, 329
pulsar, 128
pulsar glitches, 32, 33, 242, 290, 294
pulsar spin-up, 242
pulsar-wind nebulae, 296
pulsar, Vela, 341
pulsars, 31, 46, 127, 243, 294, 296
pulsations, 126
pulses
 blazars, 291
 δ-function, 130
 exponential-decay, 132
 rectangular, 131
punctuated equilibria model, 14, 33, 52
purchases, 50
Qiu, J., 221
quantum gravity, 34
quantum mechanics, 112
quasars, 246, 291, 335
quasi-linear diffusion, 314, 329
quasi-periodic bursts, neutron star, 293
quasi-periodic oscillations, 187, 341
quasi-periodic radio bursts, 344
quasi-separatrix layer, 330
quasi-stellar objects, 291
quiescent emission, flare stars, 165
quiescent time, 147
quiet Sun, power spectrum, 275
Quilligan, F., 136, 180, 244
radiated energy, 307
radiation belt, 215
radiative cooling, 29
radiative energy, 174
radiative loss, 308
radiative loss function, 307
radiative loss rate, definition, 348
radio burst oscillations, 344
radio bursts, 25, 26, 125, 163, 187, 233
radio emission, 23, 28, 125, 217, 233, 253, 313, 330
 accretion disks, 295
 blazars, 291
radio propagation, 318
sandpiles, 3–6, 8, 39, 104, 139, 288, 290, 322
Sanz, J.L., 147
satellite failures, 316
saturation energy, 84, 94
saturation time, 84, 94, 120
Saturn, 22, 282, 283
Saturn rings, 22, 23, 283, 290, 324
Saupe, D., 250
scale-invariance, 4
scalegrams, 187
scaling law, earthquakes, 150
scaling laws, 211
hydrostatics, 308
SOC parameters, 308
Scargle, J., 127, 142, 178, 186, 187, 341
scattering of particles, 22
Schatten, K.H., 339
Scheinkman, J.A., 11, 13, 50
Schottky’s theorem, 129
Schottky, W., 129
Schreckenberg, M., 50
Schrijver, C.J., 260, 262, 300
Schroeder, M., 127, 250
Schulz, L.S., 338
Schuster, H.G., 126, 340
Schwab, F., 8, 19, 56
Schwartz, R.A., 26, 218
Schwarz, U., 187, 342
scintillations, 335
Scorpius X-1, 341
sea-air surface, 325
Searle, L., 289
sediment deposition, 18
seeing, 261, 276
segmentation, 22
Seiden, P.E., 278, 338–340
seismometers, 201
Seikar-Iyenbgar, A.N., 8
selection effects, 238
self-gravity collapse, 290
self-organization, 5, 324
biology, 324
self-similar expansion, 324
self-similarity, 282
Selman, F.J., 32, 34, 291, 292
semantics, 10
semiconductors, 126
Sen, A.K., 274
sensitivity limits, 212
sentence, 10
SEP, 25, 26, 163, 237, 322
energies, 296
separation of events, 146
separator reconnection models, 28
separators, 305
Sepkoski, J.J.Jr., 12, 13, 15, 52
Serre, T., 343
Seyfert galaxies, 136
NGC4051, 128
NGC5506, 128
SGR, 32, 33, 243, 244, 290, 294
Shakura, N.I., 295
shallow-water layer, 325
Shaw, B.E., 54
Shaw, G.B., 171
Shea, M.A., 238
shear viscosity, 329
sheared arcade, 330
Shock acceleration, 296, 311, 313
shock surfing acceleration, 296
shock waves, 163, 233, 237, 290, 315, 317
shocked matter, 290
shocks, 151
showers, particles, 296
Shukla, P.K., 324
Sierpinski carpet, 273
Sierpinski triangle, 257
signal-to-noise ratio, 132, 175
silica, 8
Simnett, G.M., 153
Singh, H., 191, 193
singularity spectrum, 273
Sitnov, M.I., 19
Sivia, D.S., 142
Sivron, R., 31, 33
Skilling, J., 142
slider-block spring model, 17, 18
Sloan Digital Sky Survey, 282
slumps, 18
Smalley, R.F.Jr., 54
Smart, D.F., 238
Smolin, L., 34
smoothing, 178
Sneppen, K., 8, 14, 51, 52, 151
snow avalanches, 2, 14, 15, 18, 290
snowflakes, 249, 268
SOC, 3–5, 25, 39
biology, 321
criteria, 288, 290, 293, 294
definition, 288, 321
geology, 321
hierarchical model, 322
instability, 290
non-SOC processes, 321
SOC-like processes, 321
source of free energy, 290
SOC criteria tests
accretion disks, 295
Brownian motion, 328
cosmic rays, 296
particle acceleration, 311
radio bursts, 314
solar dynamo, 301
solar wind, 334
turbulence, 330
social network, 13
Socolar, J.E.S., 44
soft state, 78
soft X-ray transients, neutron stars, 293
Solanki, S.K., 278
solar age, definition, 347
solar bright points, 195
solar constant, definition, 347
solar corona, 211
intermittency, 343
prediction, 343
strange attractor dimension, 343
solar diameter, 187
solar dynamo, 63, 262, 290, 299, 301, 339, 343
solar escape speed, definition, 347
solar flares, 19, 23, 26, 89, 127, 277, 290, 299, 304, 308, 322
2000 July 14 event, 229, 258, 264
area statistics, 279
correlations, 219
EUV, 229
fractals, 262, 270
frequency distributions, 217
geometric model, 270
hard X-ray pulses, 329
HXR, 187, 217, 229
light curves, 229
monthly rate, 218
spatial scales, 279
SXR, 224, 229
thermal energy, 306
waiting times, 153
solar flux unit, definition, 347
solar gravitation, definition, 347
solar interior, 262
solar irradiance, 187, 233
solar mass, definition, 347
solar physics, lattice simulations, 63
solar radiant flux density, definition, 347
solar radiant power, definition, 347
solar radio bursts, time series analysis, 342
solar radius, definition, 347
solar rotation effect, 253
solar solid angle, definition, 347
solar system formation, 280, 289
solar wind, 19, 136, 153, 163, 290, 315, 316, 324, 332, 338
chaotic dynamics, 343
waiting time distributions, 164
Solar-Geophysical Data catalog, 253
soldier kill, 8
Sole, R.V., 14, 53
solitons, 324, 325
soluble constituents, 338
solvent, 338
Somfai, E., 7, 8
Sornette, A., 16, 54
Sornette, D., 4, 8, 10, 11, 13, 16, 17, 44, 51, 54, 150, 151, 250, 281
SOT/Hinode, 278
Sotolongo-Costa, O., 151, 329
sound speed, definition, 348
southward interplanetary magnetic field, 317
South Atlantic Anomaly, 155
Southworth, G., 233
sparking frequency, 55
spatial scales
asteroid belt, 282
lunar craters, 280
Saturn ring, 283
solar flares, 279
statistics, 277
SPE catalog, 237
species abundance, 14
speckle reconstruction, 258, 261
spectral methods, 187
speculation, 290
speed of light, definition, 347
spelling mistakes, 7
spheromak, 5
Spiegel, E.A., 343
spike removals, 212
spiral patterns, 324
spring constant, 38, 53
springs, 38
stable equilibrium, 3
Standard and Poor’s index, 11
standard deviation, 115
Stanley, H.E., 11, 13, 51
Index

star clusters
 30 Doradus, 290
 AB Dor, 29
star crust fractures, 290
star density, 8
star formation, 3, 290, 322, 324, 338
starburst cluster, 290, 291
starbursts, 32, 34
Starck, J.-L., 194
starquakes, 32
stars, 28
 47 Cas, 29
 AD Leo, 28, 29, 165, 166
 AT Mic, 28
 AU Mic, 28
cataclysmic variables (see CV), 29
CN Leo, 29
dMe stars, 28
EK Dra, 29
Epsilon Eri, 29
EV Lac, 28, 29
F2-V type, 29
FK Aqr, 28
GJ411, 29
HD 2726, 29
HD 2756, 29
Kappa Cet, 29
main-sequence, 28
red dwarfs, 28
red giants, 29
RR Lyrae, 191
RS Ophiuchi, 29
RV Tau-type, 341
T Scuti, 341
V1054 Oph, 28
white dwarfs, 29
YZ CMi, 28, 239
starspots, 299
start time, 175, 226
Stassinopoulos, D, 15
static equilibrium, 4
stationary Poisson process, 142
statistical independence, 288
statistical uncertainty, 212
statistical weighting, 212
Stauffer, D., 269
steady-state, 33
steady-state transport equation, 315
Stefan–Boltzmann constant, definition, 347
Stein, R.S., 16
Steinberg, J.T., 335
stellar chromospheric oscillations, 187
stellar coronae, 28, 165, 211, 239
stellar distance, 306
stellar dynamics, 32
stellar dynamo, 290
stellar flares, 33, 139, 290, 304, 314
 frequency distributions, 208, 239
Stelzer, B., 240
stem cell, 8
Stern, B.E., 167
stick-and-slip motion, 16, 53
stick-and-slip reconnection, 305
stochastic flaring, 29
stock market, 3, 9, 11, 13, 140, 321
stock market crash, 290
stock market precursors, 11
Stokes’ theorem, 60
stop-and-go sandpile, 41
storms, 17
strange attractor dimension, 340–342
streams, 251, 326
structure function, 274
Su, Y., 26, 218, 221
sub-atomic scales, 251
Subaru Main-Belt Asteroid Survey, 282
subduction zones, 16
subpulses, 221, 236
substorms, 19, 20, 58, 104, 153, 214, 215, 290,
 316, 317, 324, 334, 337
Sudan, R.N., 330
sudden storm commencement, 237
Suhl, H., 8
Sundkvist, D., 335
sunspot classification, 280
sunspot number, 253, 343
sunspot oscillations, 187
sunspot penumbras, 259
sunspot umbrae, 259
sunspots, 256, 262, 273, 277, 278, 299, 301, 343
Sunyaev, R.A., 295
super-granulation, 259
super-luminous, 246
superconductivity, 32
superconductor, 8, 45
SuperDARN, 153
superfluid, 244
superfluid hydrodynamics, 293
superfluid vortex unpinning model, 32
superfluidity, 32
supergranulation, 262
supernova explosions, 290, 335
supernova remnants, 244, 296
supernova shocks, 3, 297
supernovae, 290
superposition theorem, 141
surface reaction, 8
survival, 9, 12
Sutherland, P.G., 134
Svensson, R., 167
Sweet-Parker, 29
SXR, 23, 25, 26, 28, 128, 159, 217, 224, 229, 270, 275, 306
solar flares, 308
SXT/Yohkoh, 115, 226, 229, 231, 264
symbolic dynamics, 342
symmetry braking, 324, 333
sympathetic CMEs, 163
sympathetic flares, 140, 153, 161, 194, 291, 324
synchrotron emission, 293
synodic period, 316
system, 1
Szczepaniak, A., 333
tachocline, 262, 277, 290, 299, 322, 339
Tadic, B., 44
Tainaka, K., 32, 34
Takalo, J., 19, 20, 22, 58, 61, 62, 70, 214–216, 298, 319, 338
Takeuchi, M., 31, 33, 79, 134, 245, 295
Tam, S.W.Y., 22
Tanaka, Y., 128, 129
Tang, C., 4, 5, 16, 34, 38, 39, 41, 43, 44, 50, 54, 133, 321
Tang, F., 278
tangled-nature model, 14
Teerikorpi, P., 250, 289, 326
temperature, 14, 261
bias, 308
filters, 233
increase, 290
models, 195
wavelength dependence, 229
termite nest, 15
Terradas, J., 191, 192
Terrell, N.J.Jr., 167
tectonic plates, 3, 16, 53, 325
tectonic slipping, 290
top-down scenario, 289
topographical map, 251
tornado, 3
torsional Alfvén waves, 28
torsional shear mode, 295
total counts, 306
total emission measure, 306
total released energy, 87, 91
TRACE, 23, 24, 194, 195, 229, 231, 264, 280
traffic, 7, 126
traffic collisions, 290
traffic jam, 9, 11, 13, 47
Transquille, C., 218, 221
temporary chaos, 341
transistors, 126
transition region, 239, 303, 330
trapping, 314
tree rings, 19
trees, 249
Treuman, R.A., 318
Triassic era, 13
trigger, SOC, 290
Trojan asteroids, 282
tropical fishes, 324
Trottet, G., 26, 234, 235, 314
truncations, 212
Tsuneta, S., 115–117, 313
turbidite depositions, 15
turbidites, 14, 18
turbulence, 8, 19, 151, 153, 164, 262, 274, 275, 277, 295, 325, 326, 337
2-fluid system, 3
Alfvénic, 343
fluid, 3

Thompson, B.J., 154
Thompson, C., 32, 33, 244
threshold, 64, 94, 194, 238, 288
threshold criteria, 195
threshold energy, 84
threshold method, 147
threshold of detection, 174
threshold slope, 5, 40
threshold-segmentation method, 198
tidal disruption, 284
tidal forces, 282, 290
tiger, 324
time profiles, 122, 123, 229
time scale spectrum, 253
time series, 172
analysis, 342
geomagnetic, 187
timing noise, 294
tokamak plasma, 8
tokomak, 329
top-down scenario, 289
topographical map, 251
tornado, 3
torsional Alfvén waves, 28
torsional shear mode, 295
total counts, 306
total emission measure, 306
total released energy, 87, 91
TRACE, 23, 24, 194, 195, 229, 231, 264, 280
traffic, 7, 126
traffic collisions, 290
traffic jam, 9, 11, 13, 47
Transquille, C., 218, 221
temporary chaos, 341
transistors, 126
transition region, 239, 303, 330
trapping, 314
tree rings, 19
trees, 249
Treuman, R.A., 318
Triassic era, 13
trigger, SOC, 290
Trojan asteroids, 282
tropical fishes, 324
Trottet, G., 26, 234, 235, 314
truncations, 212
Tsuneta, S., 115–117, 313
turbidite depositions, 15
turbidites, 14, 18
turbulence, 8, 19, 151, 153, 164, 262, 274, 275, 277, 295, 325, 326, 337
2-fluid system, 3
Alfvénic, 343
fluid, 3
intermittent, 332, 334, 337
non-ionized fluids, 242
onset, 340
shell model, 148
single fluid, 3
spectrum, 332
turbulent boundary layer, 334
turbulent cascade, 56, 163
turbulent convection, 301
turbulent viscosity, 295
Turcotte, D.L., 7, 12–14, 16–19, 38, 44, 53–56, 250, 341
twisted fluxtube, 330
two-scale cascading process, 333
two-sector pattern, 316

Uchida, Y., 28, 301–303
Ueno, S., 134, 185, 186
Ulysses, 10, 221, 332
uncorrelatedness, 139, 161
underground seeping, 338
universe expansion, 290
universe, age, 289
unloading process, 22, 319
unpinning, 293
unsharp masking, 180
Uranus, 22
urban growth, 13, 89
urban sprawl, 9
Uritsky, V.M., 19, 20, 22, 319, 329, 332, 334, 337
Uttley, P., 134, 136
UV, 12, 26, 28, 32, 126, 239, 330, 343
blazars, 291
UV brightenings, 233
Uzdensky, D.A., 29

Vacuum Tower Telescope Tenerife, 258
Vaiana, G.S., 89, 161
Vainio, R., 332
valleys, 251, 277
Van der Ziel, A., 129
Van Hollebeke, M.A.I., 237, 238
Van Houten, C.J., 282
Vandewalle, N., 15
VanHollebeke, M.A.I., 26
Vassiliadis, D., 28, 70, 71, 298
Vaughan, B.A., 134
Vecchio, A., 191
vector magnetograph data, 299
Vela pulsar, 294, 341
Veli, M., 330
velocity fluctuations, 274
Veltri, P., 163, 332
vendors, 11

Venus, 22
Verdes, P.F., 343
Verhulst, P.F., 94
Veronig, P., 26, 227, 228, 343
Vespignani, A., 44
Vesta, 282
vibrations, 326
Vieira, L.E.A., 187
Vigroux, A., 187
Vilmer, N., 314
virus, 8
viscosity, 295
anomalous, 296
coefficient, 329
kinematic, 329
of fluid, 3
shear, 329
viscous diffusion, 79
visible light, 124, 126
visual receptor cells, 8
Voges, W., 341
volcanic acoustic emission, 15
volcanic activities, 15
volcanic activity of Stromboli, 18
volcanic eruption, 14, 17, 18
volcanic eruptions, 277, 280
volcanoclastic turbidite deposits, 15, 18
voltage, 129
volume filling factor, 270
volume scaling, 89, 231
von Neumann, J., 46
vortices, 8, 45, 244, 313, 324, 325, 332
vortices unpinning, 293
Voyager, 23, 332

waiting times, 11, 140, 288
accretion disks, 167
black holes, 167
cME, 162, 316
cutoff, 152
Cygus X-1, 31
distributions, 148
defactos, 17
flare stars, 165
géophysique, 149
global system, 141
hard X-rays, 154
local system, 141
magnetospheric physics, 151
measurements, 146
Monte-Carlo simulations, 144
nonstationary statistics, 142
photons, 165, 167
powerlaw slopes, 144, 146
probability function, 142
SEP, 316
soft X-rays, 159
solar flares, 153, 155, 157
solar radio bursts, 163
solar wind, 163, 164, 333
stock market, 140
Wall Street crash, 3, 11
Walsh, R.M., 28, 303
Wang, H., 221
Wang, H.N., 98
Wang, J.X., 278
war casualties, 12, 13
Warzawski, L., 32, 33, 244
Watari, S., 187, 253–256, 343
WATCH/Granat, 69, 154, 155, 157, 220
water cycle, 18
water flow, 3
water sprinkler, 7
water transportation, 9
Watkins, N.W., 19, 22, 214, 216, 332–334
wave clustering, 332
wave–particle interactions, 313
wave–particle interactions, 311, 332, 340
wavelength coverage, 195
wavelengths, 126
wavelet analysis, 122, 147, 182, 187, 341, 342
waves, 191
Wawrzaszek, A., 333
weak-driving limit, 108
weather system, 1
web access, 89
web server access, 7
Weierstrass, K., 249
weighting, 214
Weissman, M.B., 8
Wentzel, D.G., 278, 339, 340
Westbrook, C.D., 268
Westervelt, R.M., 8
wet sand, 5
White, O.R., 127, 186
WIC/IMAGE, 317
Wiehr, E., 260
Wiener–Khinchin theorem, 130, 131
Wiener-Khinchin theorem, 131
Wiesenfeld, K., 4, 5, 34, 38, 41, 43, 44, 50, 133, 321
Wiita, P.J., 31, 33
Wilczek, F., 287
wildlife service land, 19
Willinger, W., 13
Willis, J.C., 89
Willson, R.C., 187
WIND, 164, 215
windowed Fourier transform, 187
Wisconsin Hα Mapper, 335
Wolfram, S., 98
wood, 290
Woodford, M.A., 11, 13, 50
Woods, J.W., 194
Woods, R.E., 194
word associations, 10
word frequency, 10, 13
world-wide web, 89
Wu, S., 15, 18
Xapsos, M.A., 237
XEST/XMM, 240
Xiong, Y., 31, 33, 80, 295
Xu, F., 295
Yashiro, S., 25, 26, 228
Yeats, R.S., 16
Yeh, W.J., 45, 163
Yohkoh/SXT, 115
Yokoyama, T., 308
Yonehara, A., 31, 33, 78, 80
Yoshida, F., 282
Young, C.A., 187, 198, 199
Young, K., 341
Young, M.D.T., 32, 33, 242
Yule, G.U., 89
Yurovsky, Y., 342
Zanette, D.H., 9, 10, 13, 89
Zapperi, S., 44
Zarro, D.M., 224
Zebker, H.A., 22, 284
zebra, 324
zebra stripe, 5
Zeeman effect, 278
Zelenyi, L.M., 332
Zhang, H.Q., 278
Zhang, J., 15, 18
Zhang, Y.C., 44, 51
Zhou, Y., 331
Zieve, R.J., 8
Zinn, R., 289
Zipf law, 9, 35
Zipf plot, 10, 208
Zipf, G.K., 10, 13, 208
Zirker, J.B., 303
Zwaan, C., 278