Hierarchical clustering

- Organizes data instances into trees.
- For visualization, exploratory data analysis.
- **Agglomerative methods** build the tree bottom-up, successively grouping together the clusters deemed most similar.
- **Divisive methods** build the tree top-down, recursively partitioning the data.
What is a hierarchical clustering?

□ Given instances $D = \{x_1, \ldots, x_m\}$.

□ A hierarchical clustering is a set of subsets (clusters) of D, $C = \{C_1, \ldots, C_K\}$, where

- Every element in D is in at least one set of C (the root)
- The C_j can be assigned to the nodes of a tree such that the cluster at any node is precisely the union of the clusters at the node’s children (if any).
Example of a hierarchical clustering

- Suppose \(D = \{1, 2, 3, 4, 5, 6, 7\} \).
- One hierarchical clustering is
 \[C = \{\{1\}, \{2, 3\}, \{4, 5\}, \{1, 2, 3, 4, 5\}, \{6, 7\}, \{1, 2, 3, 4, 5, 6, 7\}\} \].

- In this example:
 - Leaves of the tree need not correspond to single instances.
 - The branching factor of the tree is not limited.

- However, most hierarchical clustering algorithms produce binary trees, and take single instances as the smallest clusters.
Agglomerative clustering

□ Input: Pairwise distances \(d(x, x') \) between a set of data objects \(\{x_i\} \).
□ Output: A hierarchical clustering
□ Algorithm:
 – Assign each instance as its own cluster on a working list \(W \).
 – Repeat
 ▶ Find the two clusters in \(W \) that are most “similar”.
 ▶ Remove them from \(W \).
 ▶ Add their union to \(W \).

Until \(W \) contains a single cluster with all the data objects.

– The hierarchical clustering contains \textit{all} clusters appearing in \(W \) at any stage of the algorithm.
How do we measure dissimilarity between clusters?

- Distance between nearest objects ("Single-linkage" agglomerative clustering, or "nearest neighbor"):\[
\min_{x \in C, x' \in C'} d(x, x')
\]

- Distance between farthest objects ("Complete-linkage" agglomerative clustering, or "furthest neighbor"):\[
\max_{x \in C, x' \in C'} d(x, x')
\]

- Average distance between objects ("Group-average" agglomerative clustering):\[
\frac{1}{|C||C'|} \sum_{x \in C, x' \in C'} d(x, x')
\]
Show examples!
Intuitions about cluster similarity

- Single-linkage
 - Favors spatially-extended / filamentous clusters
 - Often leaves singleton clusters until near the end
- Complete-linkage favors compact clusters
- Average-linkage is somewhere in between
Monotonicity

- Single-linkage, complete-linkage and group-average dissimilarity measure all share a monotonicity property:
 - Let A, B, C be clusters.
 - Let d be one of the dissimilarity measures.
 - If $d(A, B) \leq d(A, C)$ and $d(A, B) \leq d(B, C)$, then $d(A, B) \leq d(A \cup B, C)$.
Monotonicity of Single-linkage criterion

Proof by picture:
More formal proof:

□ We are given that \(d(A, B) \leq d(A, C) \) and \(d(A, B) \leq d(B, C) \)
□ Then:

\[
d(A \cup B, C) = \min_{x \in A \cup B, x' \in C} d(x, x') \\
= \min \left(\min_{x_a \in A, x' \in C} d(x_a, x'), \min_{x_b \in B, x' \in C} d(x_a, x') \right) \\
= \min (d(A, C), d(B, C)) \\
\geq \min (d(A, B), d(A, B)) \\
= d(A, B)
\]

□ Proofs for group-average and complete-linkage are similar.
The monotonicity property implies that every time agglomerative clustering merges two clusters, the dissimilarity of those clusters is \geq the dissimilarity of all previous merges.

Why?
Dendrograms

The monotonicity property implies that every time agglomerative clustering merges two clusters, the dissimilarity of those clusters is \geq the dissimilarity of all previous merges.

Why?

Dendrograms (trees depicting hierarchical clusterings) are often drawn so that the height of a node corresponds to the dissimilarity of the merged clusters.
Dendrograms for Example 1 data

COMP 652 - Lecture 15

15 / 55
Dendrograms for Example 2 data
We can form a flat clustering by cutting the tree at any height.

Jumps in the height of the dendrogram can suggest natural cutoffs.
How many clusters?

- How many clusters are generated by the agglomerative clustering algorithm?
How many clusters?

- How many clusters are generated by the agglomerative clustering algorithm?
- Answer: $2m - 1$, where m is the number of data objects.
- Why? A binary tree with m leaves has $m - 1$ internal nodes, thus $2m - 1$ nodes total.
- More explicitly:
 - The working list W starts with m singleton clusters
 - Each iteration removes two clusters from W and adds one new one
 - The algorithm stops when W has one cluster, which is after $m - 1$ iterations
Divisive clustering

- Works by recursively partitioning the instances.
- How might you do that?
Divisive clustering

- Works by recursively partitioning the instances.
- How might you do that?
 - K-means?
 - Max weighted cut on graph where edges are weighted by pairwise distances?
 - Maximum margin?

- Many heuristics for partitioning the instances have been proposed ... but many are computationally hard and/or violate monotonicity, making it hard to draw dendrograms.
Hierarchical clustering summary

- Hierarchical clustering organizes data objects into a tree based on similarity.
- Agglomerative (bottom-up) tree construction is most popular.
- There are several choices of linkage criterion.
- Monotonicity allows us to draw dendrograms in which the height of a node corresponds to the dissimilarity of the clusters merged.
- Trees can be cut off at some level, to generate a flat partitioning of the data.
Dimensionality reduction
What is dimensionality reduction?

- Mapping data objects to (short) real vectors
- For visualization, comparison, outlier detection
- For further machine learning
- Some techniques:
 - Principal components analysis (linear)
 - Kernel PCA (nonlinear)
 - Independent components analysis (linear or nonlinear)
 - Self-organizing maps (nonlinear)
 - Multi-dimensional scaling (nonlinear, allows non-numeric data objects)
When is dimensionality reduction possible? (I)

Good case
When is dimensionality reduction possible? (II)

Not too bad

COMP 652 - Lecture 15
Hard case
For get it!
All dimensionality reduction techniques are based on an implicit assumption that the data lies along some *low-dimensional manifold*. This is the case for the first three examples, which pretty much lie along a 1-dimensional manifold despite being plotted in 2D. In the last example, the data has been generated randomly in 2D, so no dimensionality reduction is possible without losing information. The first three cases are in increasing order of difficulty, from the point of view of existing techniques.
Simple Principal Component Analysis (PCA)

- Given: \(m \) data objects, each a length-\(n \) real vector.
- Suppose we want a 1-dimensional representation of that data, instead of \(n \)-dimensional.
- Specifically, we will:
 - Choose a line in \(\mathbb{R}^n \) that “best represents” the data.
 - Assign each data object to a point along that line.
Which line is best?
How do we assign points to lines?
Let our line be represented as $\mathbf{b} + \alpha \mathbf{v}$ for $\mathbf{b}, \mathbf{v} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$. For later convenience, assume $\|\mathbf{v}\| = 1$.

Each instance \mathbf{x}_i is assigned a point on the line $\hat{\mathbf{x}}_i = \mathbf{b} + \alpha_i \mathbf{v}$.

We want to choose \mathbf{b}, \mathbf{v}, and the α_i to minimize the total reconstruction error over all data points, measured using Euclidean distance:

$$R = \sum_{i=1}^{m} \| \mathbf{x}_i - \hat{\mathbf{x}}_i \|^2$$

$$= \sum_{i=1}^{m} \| \mathbf{x}_i - (\mathbf{b} + \alpha_i \mathbf{v}) \|^2$$
A constrained optimization problem!

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{m} \|x_i - (b + \alpha_i v)\|^2 \\
\text{w.r.t.} & \quad b, v, \alpha_i, i = 1, \ldots m \\
\text{s.t.} & \quad \|v\|^2 = 1
\end{align*}
\]

We write down the Lagrangian:

\[
L(b, v, \lambda, \alpha_1, \ldots \alpha_m) = \sum_{i=1}^{m} \|x_i - (b + \alpha_i v)\|^2 + \lambda(\|v\|^2 - 1)
\]

\[
= \sum_{i=1}^{m} \|x_i\|^2 + m\|b\|^2 + \|v\|^2 \sum_{i=1}^{m} \alpha_i^2
\]

\[
- 2b^T \sum_{i=1}^{m} x_i - 2v^T \sum_{i=1}^{m} \alpha_i x_i + 2b^T v \sum_{i=1}^{m} \alpha_i
\]

\[
- \lambda \|v\|^2 + \lambda
\]
The most straightforward approach would be to write the KKT conditions and solve the resulting equations.

Unfortunately, we get equations which have multiple variables in them, and the resulting system is not linear (you can check this).

Instead, we will fix v.

For a given v, finding the best b and α_i is now an unconstrained optimization problem:

$$
\min R = \min \sum_{i=1}^{m} \|x_i - (b + \alpha_i v)\|^2
$$
Solving the optimization problem (II)

□ We write the gradient of R wrt to α_i and set it to 0:

$$\frac{\partial R}{\partial \alpha_i} = 2\|v\|^2 \alpha_i - 2v^T x_i + 2b^T v = 0 \Rightarrow \alpha_i = v^T(x_i - b)$$

where we take into account that $\|v\|^2 = 1$.

□ We write the gradient of R wrt b and set it to 0:

$$\nabla_b R = 2mb - 2\sum_{i=1}^m x_i + 2 \left(\sum_{i=1}^m \alpha_i \right) v = 0 \quad (1)$$

□ From above:

$$\sum_{i=1}^m \alpha_i = \sum_{i=1}^m v^T(x_i - b) = v^T \left(\sum_{i=1}^m x_i - mb \right) \quad (2)$$
By plugging (2) into (1) we get:

\[v^T \left(\sum_{i=1}^{m} x_i - mb \right) v = \left(\sum_{i=1}^{m} x_i - mb \right) \]

This is satisfied when:

\[\sum_{i=1}^{m} x_i - mb = 0 \Rightarrow b = \frac{1}{m} \sum_{i=1}^{m} x_i \]

This means that the line goes through the mean of the data

By substituting \(\alpha_i \), we get:

\[\hat{x}_i = b + (v^T(x_i - b))v \]

This means that instances are projected orthogonally on the line to get the associated point.
Example data
Example with \(\mathbf{v} \propto (1, 0.3) \)
Example with $v \propto (1, -0.3)$
Finding the direction of the line

□ Recall the formulation:

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{m} \|x_i - (b + \alpha_i v)\|^2 \\
\text{w.r.t.} & \quad b, v, \alpha_i, i = 1, \ldots m \\
\text{s.t.} & \quad \|v\|^2 = 1
\end{align*}
\]

□ Substituting \(\alpha_i = v^T(x_i - b) = (x_i - b)^T v\) into our optimization problem we obtain a new optimization problem:

\[
\begin{align*}
\text{min}_v & \quad \sum_{i=1}^{m} \|x_i - b - (v^T(x_i - b))v\|^2 \\
\text{s.t.} & \quad \|v\|^2 = 1
\end{align*}
\]

□ Expanding the norm squared, we can simplify further . . .
Finding the direction of the line

- Optimization problem re-written: $\max_v \sum_{i=1}^{m} v^T(x_i - b)(x_i - b)^Tv$
s.t. $\|v\|^2 = 1$

- The Lagrangian is:

$$L(v, \lambda) = \sum_{i=1}^{m} v^T(x_i - b)(x_i - b)^Tv + \lambda - \lambda\|v\|^2$$

- Let $S = \sum_{i=1}^{m} (x_i - b)(x_i - b)^T$ be an n-by-n matrix, which we will call the scatter matrix.

- The solution to the problem, obtained by setting $\nabla_v L = 0$, is: $Sv = \lambda v$.
Optimal choice of \mathbf{v}

- Recall: an **eigenvector** \mathbf{u} of a matrix A satisfies $A\mathbf{u} = \lambda \mathbf{u}$, where $\lambda \in \mathbb{R}$ is the **eigenvalue**.
- Fact: the scatter matrix, S, has n non-negative eigenvalues (except in certain degenerate cases) and n orthogonal eigenvectors.
- The equation obtained for \mathbf{v} tells us that it should be an eigenvector of S.
- The \mathbf{v} that maximizes $\mathbf{v}^T S \mathbf{v}$ is the eigenvector of S with the largest eigenvalue.
What is the scatter matrix?

- S is an $n \times n$ matrix with

$$S(k, l) = \sum_{i=1}^{m} (x_i(k) - b(k))(x_i(l) - b(l))$$

- Hence, $S(k, l)$ is proportional to the estimated covariance between the kth and lth dimension in the data.
Example with optimal line: $b = (0.54, 0.52), \ v \propto (1, 0.45)$
Remarks

- The line \(b + \alpha v \) is the \textbf{first principal component}.
- The variance of the data along the line \(b + \alpha v \) is as large as along any other line.
- \(b, v \), and the \(\alpha_i \) can be computed easily in polynomial time.
More generally, we can create a d-dimensional representation of our data by projecting the instances onto a hyperplane $b + \alpha_1 v_1 + \ldots + \alpha_d v_d$.

If we assume the v_j are of unit length and orthogonal, then the optimal choices are:

- b is the mean of the data (as before)
- The v_j are orthogonal eigenvectors of S corresponding to its d largest eigenvalues.
- Each instance is projected orthogonally on the hyperplane.
□ b, the eigenvalues, the \(v_j \), and the projections of the instances can all be computed in polynomial time.

□ The magnitude of the \(j^{th} \)-largest eigenvalue, \(\lambda_j \), tells you how much variability in the data is captured by the \(j^{th} \) principal component.

□ So you have feedback on how to choose \(d \)!

□ When the eigenvalues are sorted in decreasing order, the proportion of the variance captured by the first \(d \) components is:

\[
\frac{\lambda_1 + \ldots + \lambda_d}{\lambda_1 + \ldots + \lambda_d + \lambda_{d+1} + \ldots + \lambda_n}
\]

□ So if a “big” drop occurs in the eigenvalues at some point, that suggests a good dimension cutoff.
Example: $\lambda_1 = 0.0938, \lambda_2 = 0.0007$
Example: \(\lambda_1 = 0.1260, \lambda_2 = 0.0054 \)
Example: $\lambda_1 = 0.0884, \lambda_2 = 0.0725$
Example: \(\lambda_1 = 0.0881, \lambda_2 = 0.0769 \)
- Outliers have a big effect on the covariance matrix, so they can affect the eigenvectors quite a bit.
- A simple examination of the pairwise distances between instances can help discard points that are very far away (for the purpose of PCA).
- If the variances in the original dimensions vary considerably, they can “muddle” the true correlations. There are two solutions:
 - work with the correlation of the original data, instead of covariance matrix
 - normalize the input dimensions individually before PCA
In certain cases, the eigenvectors are meaningful; e.g. in vision, they can be displayed as images ("eigenfaces")
Uses of PCA

- Pre-processing for a supervised learning algorithm, e.g. for image data, robotic sensor data
- Used with great success in image and speech processing
- Visualization
- Exploratory data analysis
- Removing the linear component of a signal (before fancier non-linear models are applied)