
 

 

 
Fig. 1.  Conceptual framework of the RQNN model 
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Abstract— A filtering methodology inspired by the 

principles of quantum mechanics and incorporating the well-

known Schrodinger wave equation is investigated for the first 

time for filtering EMG signals. This architecture, referred to as 

a Recurrent Quantum Neural Network (RQNN) can 

characterize a non-stationary stochastic signal as time varying 

wave packets. An unsupervised learning rule allows the RQNN 

to capture the statistical behaviour of the input signal and 

facilitates estimation of an EMG signal embedded in noise with 

unknown characteristics. Results from a number of benchmark 

tests show that simple signals such as DC, staircase DC and 

sinusoidal signals embedded with a high level of noise can be 

accurately filtered. Particle swarm optimization is employed to 

select RQNN model parameters for filtering simple signals. In 

this paper, we present the RQNN filtering procedure, using 

heuristically selected parameters, to be applied to a new 

thirteen class EMG based finger movement detection system, 

for emulation in a Shadow Robotics robot hand. It is shown 

that the RQNN EMG filtering improves the classification 

performance compared to using only the raw EMG signals, 

across multiple feature extraction approaches and subjects. 

Effective control of the robot hand is demonstrated. 

 

Index Terms— electromyogram (EMG), Recurrent Quantum 

Neural Network (RQNN), filtering. 

I. INTRODUCTION 

HE detection of surface Electromyographic (sEMG) 

signals is becoming an increasing requirement in 

biomedical applications. However, sEMG signals that 

originate in the muscles are frequently contaminated by 

noise. Noise or artifacts may be generated by different 

sources, such as movement of electrodes during signal 

acquisition, hardware employed for signal amplification, etc. 

If the type of noise present in a signal is known a priori then 

appropriate filtering techniques may be employed. However, 

in many practical applications the nature of the noise is 

unknown. Under such circumstances, filtering methods that 

can be applied with little or no a priori knowledge about the 

signal or the embedded noise are required. There has been 

decades of research, however, improved methodologies are 

still needed, to enable robustness and adaptivity. The 

filtering methodology discussed in this paper is one such 

concept that is being investigated for the first time for EMG 

signal filtering. This EMG signal preprocessing approach 
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utilizes concepts from quantum mechanics (QM) and neural 

network theory within a framework referred to as Recurrent 

Quantum Neural Network (RQNN) [1, 2]. Various groups 

have shown EMG-based control of prosthesis with greater 

movement dexterity using different combinations of 

extracted features and classification methods [3-6]. 

However, if an appropriate filtering method, such as the one 

discussed in this paper can be introduced prior to extracting 

features, then the performance of the classifier can be 

improved simply by using the enhanced input signal.  

Since EMG signals are considered a realization of a 

random or stochastic process [7], a stochastic filter can be 

designed based on probabilistic measures. Bucy in [8] states 

that every solution to a stochastic filtering problem involves 

the computation of a time varying probability density 

function (pdf) on the state space of the observed system. In 

the architecture of the RQNN, the Schrodinger wave 

equation (SWE) [9] plays a central role so as to enable 

online estimation of a time varying pdf in estimating and 

removing noise from the EMG signal. 

In quantum terminology, the state is represented by   (a 

vector in the Hilbert space  ) and referred to as a wave 

function or a probability amplitude function. The time 

evolution of this state vector   is according to the SWE and 

is represented as, 

 
  

       

  
         

(1) 

Here   is the Hamiltonian or the energy operator and is 

given as   
 

  
 where     (i.e.    is Plank’s constant

1
 [10]. 

Here        is the wave function associated with the 

quantum object at space-time point      .  

Fig. 1 shows a basic architecture of the RQNN model 

discussed in this paper. Here a one-dimensional array of 

neurons mediates a spatio-temporal field with a unified 

quantum activation function in the form of a Gaussian that 

aggregates the pdf information from the observed noisy 

input signal. The solution of the SWE (which is complex 

valued and whose modulus squared is the pdf that localizes 

the position of the quantum object in the vector space) gives 

 
1 The Planck’s constant is an atomic-scale constant that denotes the size 

of the quanta in quantum mechanics. The atomic units are a scale of 

measurement in which the units of energy and time are defined so that the 

value of the reduced Planck constant is exactly one. 
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Fig. 2.  Signal estimation using the RQNN model 
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us the activation function. The time-dependent single 

dimension nonlinear SWE can be considered a partial 

differential equation describing the dynamics of the wave 

packet (modulus-square of this wave is the pdf) in the 

presence of a potential field (or function). The potential field 

is the force field in which the particles defined by the wave 

function are forced to move [11]. Thus the RQNN model is 

based on the concept that a quantum object mediates the 

collective response of a neural lattice (a spatial structure of 

an array of neurons where each neuron is a simple 

computational unit as shown in Fig. 1 and explained in 

detail in section II) [12, 13]. The neurons within this model 

are stimulated directly from the raw input signal and the 

learning rule for the weight update process utilizes a de-

learning scheme. Similar filtering techniques have also been 

investigated for robot control [14], eye tracking [12] and 

stock market prediction [15] applications.  

The remainder of the paper is organized into nine 

sections. Section II describes the theoretical concepts of the 

RQNN model. Section III describes the RQNN signal 

filtering approach. Section IV and V discuss the datasets and 

the methodology for EMG filtering with the RQNN model 

respectively. Section VI details the feature extraction (FE) 

and classification methodology utilized in this work. The 

parameter selection approach for the RQNN model is 

discussed in Section VII. Section VIII presents the results of 

applying the approach for EMG filtering while section IX 

discusses the application for the shadow robot hand control. 

Section X concludes the paper. 

II. A CONCEPTUAL RQNN FRAMEWORK 

Dawes [16, 17] proposed a novel parametric avalanche 

stochastic filter using the concept of the time varying pdf 

proposed by Bucy in [8]. This work was improved by 

Behera et al. [12, 13, 18] using Maximum Likelihood 

Estimation (MLE) instead of an inverse filter in the 

feedback loop. Further, Ivancevic in [15] provided an 

analytical analysis of the non-linear Schrodinger equation 

(NLSE) and used the closed-form solution for the concerned 

application. The basic approach of RQNN is that it does not 

make any assumption about the nature and shape of the 

noise embedded in the signal to be filtered. Therefore, such 

an approach is suitable for signals such as the EMG, within 

which the characteristics of the embedded noise are not 

known. 

Conceptually, the RQNN model is basically a one 

dimensional array of neurons (cf. Fig. 1) whose receptive 

fields are initially excited by the signal input   reaching 

each neuron through the synaptic connections. The neural 

lattice responds to the stimulus by actuating a feedback 

signal    back to the input. The time evolution of this 

average behavior   is described by the SWE [9]: 

 
  

       

  
   

  

  
                       

(2) 

where         represents the quantum state,   is the 

Laplacian operator and        is the potential energy.  

The potential energy      acts as a force under which the 

quantum state   evolves according to (2). As      sets up 

the evolution path of the wave function, any desired 

response can be obtained by properly modulating the 

potential energy.  

A similar RQNN approach for stochastic filtering [12, 13, 

18] is able to reduce noise, but its stability is highly 

sensitive to model parameters, owing to which, in case of 

imperfect tuning, the system may fail to track the signal and 

its output may saturate to unrealistic values. In the 

architecture used in this paper (cf. Fig. 2) (and in our 

previous work on EEG filtering [2]), the spatial neurons are 

excited by the input signal     . The difference between the 

output of the spatial neuronal network and the pdf feedback 

          is weighted by a weight vector      to get the 

potential     . The model can thus be seen as a Gaussian 

Mixture Model (GMM) estimator of the potential energy 

with fixed centers and variances, and only the weights being 

variable, thereby making the system less prone to instability. 

The weights can be trained using any learning rule.  

The parameters of the RQNN model have been selected 

using the particle-swarm optimization (PSO) [19-21] 

technique for filtering simple signals such as DC and 

staircase DC used to validate the method. However, there 

are several parameters to tune from and hence applying any 

optimization technique without the knowledge of the multi-

dimensional search space for filtering the complex signals 

such as the EMG can be time-consuming. Therefore, in the 

work presented in this paper, the parameters of the RQNN 

model are heuristically selected for filtering the EMG 

signals of different subjects. An ideal approach, however, 

would be to obtain subject-specific choice of parameters by 

using optimization techniques such as the one discussed in 

[1]. This would guarantee optimal performance, but as said, 

it may also be time-consuming. 

III. RQNN SIGNAL FILTERING 

This section describes the RQNN architecture shown in 

Fig. 2. The basic assumption in this architecture is that the 

average behavior of a neural lattice that estimates the signal 

is a time varying pdf which is mediated by a quantum object 

placed in the potential field        and modulated by the 

input signal so as to transfer accurate information about the 

pdf. The SWE is used to recurrently track this pdf. It is well-

known that the square of the modulus of the   function, the 

solution of the wave equation in (2), is also a pdf. The 

potential energy is calculated as: 

                     (3) 

where 

 
        

          

              
(4) 

where      is the input signal,        represents the time 

varying synaptic weights,   represents the scaling factor to 

actuate the spatial potential energy        and   is the 

variance of the neurons in the lattice (taken here as unity). 

The potential energy modulates the non-linear SWE 

described by equation (2). The filtered estimate is calculated 

using MLE as 

where   represents the different possible values which may 

 
                                  

(5) 
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Fig. 3: Position of EMG electrodes on the lower arm  

(front and back) (7 Channels, Ground and Reference) 

 

     

     
 

   

 

Fig. 4.  Display of 13 classes indicating task to be performed 

 

Fig. 5.  Training scheme of the paradigm 

0          1          2          3          4          5          6          7          8

Time in sec

beep

Cue

       

  
                             

(6) 

be taken up by the random process  . Another interpretation 

of the variable   can be as the discrete version in quantum 

space with the resolution within the discrete space referred 

to as    (taken as 0.1 in the present work) (cf. Table 1). 

Thus all possible values of   construct the number of spatial 

neurons   for the RQNN model. 

The weights        of the RQNN are updated based on 

the filtered estimation, which subsequently establishes a 

new potential        for the next time evolution. The 

synaptic weights evolve in such a manner so as to drive the 

  function to represent the exact information of the pdf of 

the filtered signal      . The weights are updated using the 

following learning rule 

where   is the learning rate, and    is the de-learning rate. 

De-learning is used to forget the previous information, as 

the input signal is not stationary, rather quasi-stationary in 

nature. In addition, de-learning prevents unbounded increase 

in the values of the synaptic weights   (see the first right 

hand side term in the above equation with negative sign) and 

does not let the system become unstable. The variable       

in the second term is the difference between the noisy input 

signal and the estimated filtered signal, thereby representing 

the embedded noise as, 

                   (7) 

If the statistical mean of the noise is zero, then this error 

correcting signal      has little effect on the weights and it 

is the actual signal content in the input      that influences 

the movement of the wave packet along the desired 

direction, which in effect helps achieve the goal of the signal 

filtering. 

IV. DATASETS 

The EMG data used in this analysis was collected at the 

Intelligent Systems Research Center, University of Ulster. 

3M Ag/AgCl circular monitoring electrodes with 

hypoallergenic, acrylic adhesive, typically used for short 

term applications are used in the present work. The diameter 

of these electrodes is 3 cm and thickness is 0.8 cm. Seven 

EMG channels (cf. Fig. 3) were recorded in unipolar mode 

with a sampling frequency of 512 Hz and high pass-filtered 

from 5 Hz. Seven subjects, all normally healthy adults, were 

recruited. Six of the seven subjects were male while one was 

female. The subjects varied in the age group 23 - 47. All 

subjects contributed three runs each for the training phase 

and one run for the evaluation phase except subject S01 and 

S05 who contributed one run in each phase. Each run 

consisted of 65 trials. There were 5 repetitions for each of 

the 13 classes, thereby resulting in 65 trials for each run. 

Each class represents an individual finger movement (open 

and close, resulting in 10 classes) and a complete fist open, 

close and rest position (remaining 3 classes) as shown in 

Fig. 4. The dataset is obtained using a cue-based paradigm, 

as shown in Fig. 5, which displays the thirteen classes. The 

trial started at second 0 with a blank screen. At second 2, a 

short warning beep (1 kHz, 70 ms) was given. The cue was 

presented on the screen from second 3 to 8 in the form of a 

darkened color of the finger movement required from the 

subject. 

 A dark blue color indicated flexion of the corresponding 

finger(s) while a dark red color indicated extension of the 

corresponding finger(s) movement. In addition to this, an 

arrow pointing inward or outward was also displayed along 

with the corresponding text written beneath the figure (cf. 

Fig. 4) so as to help visualize the task. The subjects, as per 

the display cue, were required to perform the specific 

finger(s) movement(s). The order in which the cues (trials) 

were presented to the user was generated randomly. In 

addition, the time between any two trials was also 

randomized in a range of 0.5 to 2.5 s. Randomness of 

presenting time of the heterogeneous cue raises the 

concentration power of the subjects; this is thought to be the 

main cause of the consistency in performance in similar 

investigations [22]. In the evaluation phase, feedback to the 

subjects was given in the form of a number representing the 

requested cue/class and a number representing the actual 

finger(s) detection (class) by the classifier. If both the 

numbers matched, the target for that particular trial was said 

to have been achieved.  
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TABLE 1 

RQNN PARAMETERS THAT MAY BE OBTAINED HEURISTICALLY 

Parameter Explanation Value 

  Number of centres along the spatial axis of the RQNN model. This can be considered as if some quantum object (i.e., 
each neuron in the form of a window) in the neuronal lattice is looking at the spatial neural network and accepting the 
input signal sample. 

60 

ITER Number of iterative steps that are required for the response of the SWE to reach a steady state for a given 
computational sampling instant. 

10 

   The SWE equation is converted to the finite difference form with time steps δt. 0.001 

   The spatial axis is divided into   mesh points (here 60) so that   is represented as        where   varies 

from –
 

 
 to  

 

 
 . As    was fixed as 0.1, it covers the spatial axis range from -3 to +3. 

0.1 

TABLE 2 

RQNN PARAMETERS THAT MAY BE OBTAINED HEURISTICALLY OR USING OPTIMIZATION TECHNIQUES 

Parameter Explanation 

  Learning parameter and is thus necessary to update the synaptic weight vector  . 

  Mass of the quantum object and is associated with self-excitation of the SWE. 

ζ Scaling factor to actuate the spatial potential field      and thus causes input excitation (since it appears as a multiplicand in the 
SWE). The value of ζ can be kept negative or positive. 

   De-learning parameter and is used to forget the previous information. De-learning is used to prevent unbounded increase of the 
values of the synaptic weights       . 

 
Fig. 6.  RQNN model framework for EMG signal enhancement 
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V. EMG FILTERING WITH RQNN 

Fig. 6 shows the RQNN model as a component within the 

complete system. The raw EMG signal from each channel is 

fed one sample at a time and an enhanced signal is obtained 

as a result of the RQNN filtering process. The raw EMG is 

first scaled in the range 0-2 (so that fewer neurons can 

capture the input signal) before it is fed to the RQNN model. 

The range 0-2 is arbitrary and may also be taken -1 to +1. 

During the offline classifier training process, all the trials 

from a particular channel of the EMG are available. 

Therefore, the complete EMG is scaled by using the 

maximum of the amplitude value from that specific channel. 

During the evaluation process, the EMG signal is 

approximately scaled in the range of 0-2 by using the 

maximum of the amplitude value obtained from the offline 

training data of that specific channel. The net effect is that 

the input signal during the evaluation stage is also 

maintained approximately in the region of 0-2 and this 

enables the tracking of the sample using a reduced range of 

the movement of the wave packet as well as a smaller 

number of spatial neurons. In the present case, the number 

of spatial neurons along the x-axis is kept as 61
2
 to cover the 

input signal range up to 3 (because at the evaluation stage 

the signal may vary beyond the value of 2). If scaling of the 

input signal is not implemented, then the number of neurons 

required to cover the input signal range will be larger 

thereby leading to increased computational expense. 

VI. FEATURE EXTRACTION AND CLASSIFICATION 

The next task, after the RQNN filtering process, is to 

obtain the features from the enhanced EMG signal. In the 

present case, several feature extraction (FE) approaches 

have been assessed - Hjorth [23], band power, burg auto-

regressive (AR) [24], yule AR and Short Time Fourier 

Transform (STFT) [25]. These features are fed as an input to 

train the offline classifier, which in this case is the Linear 

Discriminant Analysis (LDA) classifier. Once the offline 

 
2 If the range of the neuronal lattice is -2 to +2, then with a spacing of 

0.1 between each neuron, the total number of neurons covering the range 

will be -2, -1.9, -1.8 … -0.1, 0, +0.1, … 1.9, 2 i.e. 41. However, to 
incorporate the behaviour of the signal during the unknown evaluation 

stage, the range has been extended to cover the range up to +3 by using 61 

neurons. 

analysis is complete and the classifier is trained, the 

parameters and weight vector are stored for use with the 

classifier to identify the unlabeled EMG data during the 

online analysis. In order to capture the dynamic property of 

the continuous EMG signal, the weight updation process of 

the RQNN filter is continuous (to enhance the EMG signal) 

during both the offline and the online stages while the 

classifier parameters are tuned offline and then kept fixed 

for the online classification process. 

For the frequency based FE methods i.e., band power, 

burg AR, STFT and yule AR, the range of the frequency 

bands may vary from one subject to the other. Therefore, the 

band of frequencies suitable for each subject is obtained 

offline (from within the range from 5 Hz to 150 Hz) after 

trial and error over the data at the training stage. 

VII. RQNN PARAMETER SELECTION 

This section discusses the possible ways of selecting the 

RQNN model parameters. The parameters of the RQNN that 

may be kept fixed are explained in Table 1. These 

parameters may be obtained heuristically but after suitable 

trial and experimentation over a small set of training data. 

The variable parameters of the RQNN are explained in 

Table 2. These parameters may be selected through 

optimization techniques such as PSO, genetic algorithm 

(GA) or an inner-outer cross-validation technique as the one 

discussed in [1] for a 2-channel EEG filtering application. A 

PSO approach has been implemented in this paper for 

selecting the RQNN parameters to filter simple example 

signals such as DC, staircase DC and sinusoidal signals. 

This is discussed in the next section. However, as discussed 

in [1], utilizing optimization techniques such as PSO or GA 
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TABLE 3 

PERFORMANCE COMPARISON FOR DC SIGNAL OF AMPLITUDE 2  

SNR  
(signal-to-noise ratio) 

Kalman filter 
RMSE 

Proposed RQNN 
RMSE 

20 dB 0.015 0.0004228 
6 dB 0.037 0.0012071 
0 dB 0.090 0.0017837 

 

 
Fig. 7.  Staircase DC signal filtering 

 

 
a) Hjorth 

 
b) bandpower 

 
c) burg AR 

 
d) STFT 

Fig. 8.  CA plot (evaluation) for Subject S01 (with different features) 
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for selecting the RQNN parameters for a 2 channel EEG is 

computationally expensive. This is because the RQNN 

model has several parameters (cf. Table 1 and Table 2) that 

should be varied in agreement with the frequency bands at 

the FE stage to suit each channel of an individual subject’s 

physiological signal. The EMG based control system 

presented in this paper requires a 7-channel EMG filtering. 

Thus, a large multi-dimensional search space may be 

required for parameter selection, which will be even more 

computationally expensive than the one for the 2-channel 

EEG application discussed in [1]. Therefore, a heuristic 

approach is used to obtain the RQNN parameters for the 

subject-specific 7-channel EMG filtering discussed in this 

paper. 

VIII. RESULTS AND DISCUSSION 

A. Simple example signals 

To validate the RQNN technique for filtering complex 

EMG signals, we first applied it to filter simple example 

signals in the form of DC, staircase DC and sinusoidal 

signals that have been embedded with a known amount of 

noise [1]. A DC signal of fixed amplitude (2, 5, 8 and 10) 

was embedded with 0 dB noise; the staircase DC with 

amplitude varying from 0 to 2 was embedded with 20 dB 

noise; and the sinusoidal signal of amplitude 3 was 

embedded with 20 dB noise. The parameters of the RQNN 

model (cf. Table 2) were obtained by using the PSO 

technique [19, 20]. A video showing the movement of the 

wavepacket for DC filtering is available at [26]. The root-

mean-square error (RMSE) in filtering the DC signal of 

amplitude 2 with the proposed RQNN as well as with the 

Kalman filter [27] is shown in Table 3 (partially reproduced 

from [13]) and demonstrates that the RQNN performs better 

than the Kalman filter. Fig. 7 shows filtering of the staircase 

DC signal using the RQNN approach. It can thus be stated 

that the RQNN is able to capture effectively the statistical 

behaviour of the input signal and appropriately track the true 

signal despite the presence of noise. 

B. EMG signal filtering  

The effect of filtering can be ascertained through the 

conventional performance quantifiers such as classification 

accuracy (CA) (i.e., the percentage of correct classifications) 

and kappa
3
 value. Fig. 8 displays the CA plot using the LDA 

classifier while using different sets of features with the raw 

EMG and the RQNN filtered EMG on the evaluation dataset 

for the subject S1. Table 4 and Table 5 displays the peak CA 

while Table 6 and Table 7 displays the maximum of kappa 

values for the training and the evaluation datasets 

respectively for all seven subjects. The average 

improvement with the RQNN technique across all seven 

subjects in the evaluation stage is approx. 4% in CA (p< 

2.5756e-007
4
) and more than 0.04 in kappa values (p< 

1.4979e-007) when compared with the unfiltered EMG by 

using the similar feature extraction approaches and 

classifier. As there are 13 classes to be identified, the chance 

accuracy is only 7.69% and therefore the CA enhancement 

of approx. 4% using the RQNN model is noteworthy. The 

 
3 Kappa is a measure of agreement between two estimators and since it 

considers chance agreement, it is regarded as a more robust measure in 

comparison to accuracy [29]. 
4 Two-way Analysis of Variance (ANOVA2) test is performed with the 

results of the training and the evaluation stages for the RQNN filtered and 

the raw EMG approach. 

average enhancement in the value of CA (evaluation stage) 

for each FE approach namely Hjorth, bandpower, burg AR, 

STFT and yule AR is 3.39, 3.99, 4.46, 4.2 and 2.85 

respectively. Thus, there is an increase in the system’s 

performance using the RQNN model across all the FE 

approaches. Further, the maximum enhancement in the 

value of CA (evaluation stage) for each FE approach namely 

Hjorth, bandpower, burg AR, STFT and yule AR is 7.7, 7.7, 

11.11, 6.15 and 12.11 respectively. Thus, if the parameters 

of the RQNN model are obtained specific to a subject and/or 

FE methodology, the CA may be enhanced significantly 

even furthermore for every FE approach and all the subjects. 

This can also be said from the fact that the current set of 

heuristically selected RQNN model parameters has shown 

negative performance for only two cases amongst the thirty-

five combinations with seven subjects and five FE methods. 

Future work would therefore focus on selecting the 

parameters of the RQNN by using optimization techniques, 

preferably computationally less intensive approaches. 

It can therefore be concluded from these results that the 

RQNN improves the average performance for almost all the 
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TABLE 4 

PEAK CA WITH DIFFERENT MODELS (TRAINING) 

Sr. No. Subj. 
RQNN RAW 

Hjorth BP BurgAR STFT yuleAR Hjorth BP BurgAR STFT yuleAR 

1 S1 98.46 98.46 98.46 93.84 100.00 98.46 96.92 96.92 90.77 100.00 
2 S2 90.25 85.64 67.69 62.05 86.15 92.30 86.66 66.66 63.08 86.66 

3 S3 84.02 85.56 72.16 70.61 63.40 80.41 85.05 64.43 62.37 63.91 

4 S4 74.87 76.41 65.64 52.82 62.56 78.97 73.33 55.38 50.77 62.05 
5 S5 96.92 93.84 87.69 90.77 92.30 93.84 92.30 86.15 76.92 86.15 

6 S6 87.18 81.53 67.17 59.48 71.28 87.17 81.53 58.97 64.10 77.94 

7 S7 88.72 77.44 74.87 76.41 85.12 93.33 82.56 75.38 69.74 83.58 

Average 88.63 85.55 76.24 72.28 80.12 89.21 85.48 71.98 68.25 80.04 

 
TABLE 5 

PEAK CA WITH DIFFERENT MODELS (EVALUATION) 

Sr. No. Subj. 
RQNN RAW 

Hjorth BP BurgAR STFT yuleAR Hjorth BP BurgAR STFT yuleAR 

1 S1 87.30 87.30 74.60 73.01 85.71 80.64 80.95 71.42 69.84 79.36 

2 S2 72.30 67.69 58.46 50.77 73.84 69.23 64.61 58.46 47.69 75.38 

3 S3 60.00 80.00 66.15 53.84 53.84 52.30 72.30 64.61 47.69 53.84 
4 S4 60.00 61.53 44.61 35.38 44.61 55.38 53.85 38.46 33.84 41.54 

5 S5 52.38 50.79 44.44 50.79 58.73 47.62 47.62 33.33 46.03 46.62 

6 S6 80.00 84.61 60.00 64.61 63.07 78.46 84.61 55.38 60.00 63.07 
7 S7 75.38 64.61 63.07 63.07 81.53 80.00 64.61 58.46 56.92 81.53 

Average 69.62 70.93 58.76 55.92 65.90 66.23 66.94 54.30 51.72 63.05 

 

TABLE 6 

MAX. OF KAPPA WITH DIFFERENT MODELS (TRAINING) 

Sr. No. Subj. 
RQNN RAW 

Hjorth BP BurgAR STFT yuleAR Hjorth BP BurgAR STFT yuleAR 

1 S1 0.98 0.98 0.98 0.93 1.00 0.98 0.97 0.97 0.90 1.00 

2 S2 0.89 0.84 0.65 0.59 0.85 0.91 0.85 0.64 0.60 0.86 

3 S3 0.83 0.84 0.70 0.68 0.60 0.78 0.83 0.61 0.59 0.60 

4 S4 0.73 0.74 0.63 0.49 0.59 0.77 0.71 0.52 0.47 0.59 

5 S5 0.97 0.93 0.87 0.90 0.92 0.83 0.91 0.85 0.75 0.85 
6 S6 0.86 0.80 0.64 0.56 0.69 0.86 0.80 0.55 0.61 0.76 

7 S7 0.78 0.76 0.73 0.74 0.84 0.92 0.81 0.73 0.67 0.82 

Average 0.86 0.84 0.74 0.70 0.78 0.86 0.84 0.70 0.66 0.78 

 

TABLE 7 
MAX. OF KAPPA WITH DIFFERENT MODELS (EVALUATION) 

Sr. No. Subj. 
RQNN RAW 

Hjorth BP BurgAR STFT yuleAR Hjorth BP BurgAR STFT yuleAR 

1 S1 0.86 0.86 0.72 0.70 0.84 0.79 0.79 0.69 0.67 0.78 
2 S2 0.70 0.65 0.55 0.47 0.72 0.67 0.62 0.55 0.43 0.73 

3 S3 0.57 0.78 0.63 0.50 0.50 0.48 0.70 0.61 0.43 0.50 

4 S4 0.57 0.58 0.40 0.30 0.40 0.52 0.50 0.33 0.28 0.37 

5 S5 0.48 0.47 0.40 0.47 0.55 0.43 0.43 0.27 0.41 0.43 

6 S6 0.78 0.83 0.57 0.62 0.60 0.76 0.83 0.51 0.56 0.60 

7 S7 0.73 0.61 0.60 0.60 0.80 0.78 0.61 0.55 0.53 0.80 

Average 0.67 0.68 0.55 0.52 0.63 0.63 0.64 0.50 0.47 0.60 

subjects (evaluation stage) along with using different feature 

extraction approaches when compared with the unfiltered 

EMG. The results thus show that without prior knowledge 

of the type of the noise characteristics present in the EMG, 

the RQNN can be utilized to enhance EMG signal 

separability and that the quantum approach based filtering 

method can be used as a signal preprocessing method. A 

very important feature of the RQNN methodology is that a 

single incoming sample (particle) is viewed as a wave-

packet which evolves as per the potential field (or function) 

under the influence of the SWE (cf. video at [26]). 

IX. ROBOTIC HAND 

The shadow dexterous hand (cf. Fig. 9) is a humaniform 

robot hand system developed by the Shadow Robot 

Company in London [28]. The hand is very similar to an 

average male human hand, and is designed to reproduce a 

range of movements comparable to the degrees of freedom 

of a human hand. The fingers of this humaniform robot hand 

are expected to mimic the classifier outcome from the 

system presented in Fig. 6 i.e., follow the subject’s finger 

movements as detected by the classifier during the online 

stage. The classifier is set up from the data collected during 

the training stage, wherein, the user has performed the finger 

movements as directed from the computer screen (cf. Fig. 4 
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Fig. 9. Shadow dexterous hand 

and Fig. 5). The parameters of the classifier are thus set up 

offline, in accordance with the subjects and the different 

feature extraction methods selected, as discussed in section 

VI. After setting up the classifier from the training dataset, 

the evaluation phase begins. Here the task involves finger 

movement by the subject, RQNN filtering of the EMG, 

feature extraction, classification and finally a classifier 

output command which is sent to the shadow dexterous hand 

through universal datagram protocol (UDP). The shadow 

hand is expected to emulate the classifier outcome shown in 

Fig. 6, which ideally represents the detection of the actual 

finger movement by the subject. Thus, in essence, future 

research will extend the work to control the shadow 

dexterous hand through the EMG signals of the subject(s). 

The future work would also involve mounting the tactile 

sensors on the robotic fingers so that tasks such as grasping, 

object manipulation etc. can be accomplished using similar 

signal processing, feature extraction and classification 

methodologies.  

X. CONCLUSION 

The RQNN was evaluated with case-studies of simple 

signals and the results show that the RQNN is significantly 

better than the Kalman filter while filtering a DC signal 

added with different noise levels. The learning architecture 

and the associated unsupervised learning algorithm of the 

RQNN take into account of the complex nature of the EMG 

signal. The basic approach of the RQNN ensures that the 

statistical behavior of the input signal is suitably transferred 

to the wave packet associated with the response of the 

quantum dynamics of the network. At every computational 

sampling instant, the EMG signal is encoded as a wave 

packet which can be interpreted as the pdf of the signal at 

that instant. The CA and the kappa values obtained from the 

RQNN enhanced EMG signal show a realistic improvement 

during the evaluation stages across multiple subjects as well 

as different feature extraction approaches. This performance 

enhancement (through the RQNN model) can further be 

improved by utilizing appropriate subject specific RQNN 

parameters obtained using cross-validation and/or suitable 

optimization techniques as discussed in [1]. 

The noteworthy feature of the proposed scheme is that 

without introducing complexity at the FE or the 

classification stages, the performance can be significantly 

improved simply by enhancing the EMG signal at the 

preprocessing stage. The end application of this scheme is to 

enhance the performance while controlling the humaniform 

dexterous finger through EMG. Future work will involve 

tasks such as grasping, manipulation and control while using 

advanced perception using fingertip sensors. 
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